Skip to main content
Log in

Investigating the dynamics of a delayed stage-structured epidemic model with saturated incidence and treatment functions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper investigates the dynamics of a stage-structured SI epidemic system with a saturated incidence rate and a saturated treatment function. Two discrete time delays are incorporated to represent the time required for immature to be mature, and the infected individuals to move into recover class, respectively. A thorough investigation of endogenous equilibrium states of the SI system has been conducted, and the characteristics of the dynamical system around these states, including local stability and Hopf bifurcation, have been studied. Using sensitivity analysis, the model is evaluated to determine which parameters play greater roles in the model results and subsequently which of them may be used to control the disease. Finally, some numerical simulations have been conducted to confirm the analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and material (data transparency)

Not applicable.

References

  1. M. Kermark, A. Mckendrick, Contributions to the mathematical theory of epidemics. Part I Proc. R. Soc. A 115, 700–721 (1927)

    ADS  Google Scholar 

  2. J. Jiao, X. Meng, L. Chen, Global attractivity and permanence of a stage-structured pest management SI model with time-delay and diseased pest impulsive transmission. Chaos Solitons Fractals 38, 658–668 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  3. J.Z. Liu, Dynamics of positive solutions to SIR and SEIR epidemic models with saturated incidence rates. Nonlinear Anal. Real. World Appl. 14, 1286–1299 (2013)

    Article  MathSciNet  Google Scholar 

  4. Y. Enatsu, E. Messina, Y. Muroya, Y. Nakata, E. Russo, A. Vecchio, Stability analysis of delayed SIR epidemic models with a class of nonlinear incidence rates. Appl. Math. Comput. 218, 5327–5336 (2012)

    MathSciNet  MATH  Google Scholar 

  5. J. H. Zhang, J. W. Jia, X. Y. Song, Analysis of an SEIR epidemic model with saturated incidence and saturated treat function. Sci. World J. Article ID 910421, 11 (2014)

  6. Z.Z. Zhang, H.Z. Yang, Dynamical analysis of a viral infection model with delays in computer networks. Math. Prob. Eng. 280856, 15 (2015)

    MathSciNet  MATH  Google Scholar 

  7. F. A. Rihan, H. J. Alsakaji, C. Rajivganthi, Stochastic SIRC epidemic model with time-delay for COVID-19, Adv. Differ. Equ. 502, 1–20 (2020)

  8. N.M. Ferguson, D. Nokes, R.M. Anderson, Dynamical complexity in age structured models of the transmission of measles virus. Math. Biosci. 138, 101–130 (1996)

    Article  Google Scholar 

  9. R.M. Anderson, R.M. May, Infectious Diseases of Humans (Oxford University Press, London, 1991)

    Google Scholar 

  10. F.A. Rihan, Delay Differential Equations and Applications to Biology (Springer, New York, 2021). https://doi.org/10.1007/978-981-16-0626-7

    Book  MATH  Google Scholar 

  11. L.M. Cai, X.Z. Li, M.N. Ghosh, Global stability of a stage-structured epidemic model with a nonlinear incidence. Appl. Math. Comput. 214, 73–82 (2009)

    MathSciNet  MATH  Google Scholar 

  12. X. Li, W. Wang, A discrete epidemic model with stage structure. Chaos Solitions Fractals 26, 947–958 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  13. G.A. Rhodes, T. House, The rate of convergence to early asymptotic behaviour in age-structured epidemic models. Theor. Popul. Biol. 85, 58–62 (2013)

    Article  Google Scholar 

  14. T.L. Zhang, J.L. Liu, Z.D. Teng, Stability of Hopf bifurcation of a delayed SIRS epidemic model with stage structure. Nonlinear Anal. Real. World Appl. 11, 293–306 (2010)

    Article  MathSciNet  Google Scholar 

  15. J. Glasser, Z. Feng, A. Moylan, S.Y. Valle, C. Castillo-Chavez, Mixing in age-structured population models of infectious diseases. Math. Biosci. 235, 1–7 (2012)

    Article  MathSciNet  Google Scholar 

  16. F. Chen, L. Hong, Stability and Hopf bifurcation analysis of a delayed SIRS epidemic model with nonlinear saturation incidence. J. Dyn. Control 12, 79–85 (2014)

    Google Scholar 

  17. W. Aiello, H. Freedman, A time-delay model of single-species growth with stage structure. Math. Biosci. 101, 139–153 (1990)

    Article  MathSciNet  Google Scholar 

  18. Y. Xiao, L. Chen, F. Bosch, Dynamical behavior for a stage-structured SIR infectious disease model. Nonlinear Anal. Real Word Appl. 3(2), 175–190 (2002)

    Article  MathSciNet  Google Scholar 

  19. X. Song, L. Chen, Optimal harvesting and stability for a two-species competitive system with stage structure. Math. Biosci. 170(2), 173–186 (2001)

    Article  MathSciNet  Google Scholar 

  20. S. Gourley, Y. Kuang, A stage-structured predator-prey model and its dependence on through stage delay and death rate. J. Math. Biol. 49(2), 188–200 (2004)

    Article  MathSciNet  Google Scholar 

  21. S. Liu, E. Beretta, A stage-structured predator-prey model of Beddington–deangelis type. Siam J. Appl. Math 66(4), 1101–1129 (2006)

    Article  MathSciNet  Google Scholar 

  22. J. Hui, D. Zhu, Dynamic complexities for prey-dependent consumption integrated pest management models with impulsive effects. Chaos Solitons Fractals 29(1), 233–251 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  23. M.E. Alexander, S.M. Moghadas, Bifurcation analysis of SIRS epidemic model with generalized incidence. SIAM J. Appl. Math. 65(5), 1794–1816 (2005)

    Article  MathSciNet  Google Scholar 

  24. L. Acedo, G. Gonzalez-Parra, A. Arenas, An exact global solution for the classical epidemic model. Nonlinear Anal. Real World Appl. 11(3), 1819–1825 (2010)

    Article  MathSciNet  Google Scholar 

  25. F.A. Rihan, Q.M. Al-Mdallal, H.J. Alsakaji, A. Hashish, A fractional-order epidemic model with time-delay and nonlinear incidence rate. Chaos Solitons Fractals 126, 97–105 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  26. L. Esteva, M. Matias, A model for vector transmitted disease with saturation incidence. J. Biol. Syst. 9(4), 235–245 (2001)

    Article  Google Scholar 

  27. M.D. McKay, R.J. Beckman, W.J. Conover, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 239–245 (1979)

    MathSciNet  MATH  Google Scholar 

  28. D.M. Hamby, A review of techniques for parameter sensitivity analysis of environmental models. Environ. Monit. Assess. 32(2), 135–154 (1994)

    Article  Google Scholar 

  29. C.J. Sun, Y.P. Lin, S.P. Tang, Global stability for an special SEIR epidemic model with nonlinear incidence rates. Chaos Solitons Fractals 33(1), 290–297 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  30. W. Wang, S. Ruan, Bifurcation in an epidemic model with constant removal rate of the infectives. J. Math. Anal. Appl. 291(2), 775–793 (2004)

    Article  MathSciNet  Google Scholar 

  31. W.D. Wang, Backward bifurcation of an epidemic model with treatment. Math. Biosci. 201(1–2), 58–71 (2006)

    Article  MathSciNet  Google Scholar 

  32. J.C. Eckalbar, W.L. Eckalbar, Dynamics of an epidemic model with quadratic treatment. Nonlinear Anal. Real World Appl. 12(1), 320–332 (2011)

    Article  MathSciNet  Google Scholar 

  33. X. Zhang, X.N. Liu, Backward bifurcation of an epidemic model with saturated treatment function. J. Math. Anal. Appl. 348(1), 433–443 (2008)

    Article  MathSciNet  Google Scholar 

  34. T. Zhou, W. Zhang, Q. Lu, Bifurcation analysis of an SIS epidemic model with saturated incidence rate and saturated treatment function. Appl. Math. Comput. 226, 288–305 (2014)

    MathSciNet  MATH  Google Scholar 

  35. X.B. Liu, L.J. Yang, Stability analysis of an SEIQV epidemic model with saturated incidence rate. Nonlinear Anal. Real World Appl. 13(6), 2671–2679 (2012)

    Article  MathSciNet  Google Scholar 

  36. L. Zhou, M. Fan, Dynamics of an SIR epidemic model with limited medical resources revisited. Nonlinear Anal. Real World Appl. 13(1), 312–324 (2012)

    Article  MathSciNet  Google Scholar 

  37. J.M. Heffernan, R.J. Smith, L.M. Wahl, Perspectives on the basic reproductive ratio. J. R. Soc. Interface 2(4), 281–293 (2005)

    Article  Google Scholar 

  38. L.M. Cai, Z.Q. Li, X.Y. Song, Global analysis of an epidemic model with vaccination. J. Appl. Math. Comput. 57, 605–628 (2018)

    Article  MathSciNet  Google Scholar 

  39. S. Kundu, D. Jana, S. Maitra, Study of a multi-delayed SEIR epidemic model with immunity period and treatment function in deterministic and stochastic environment. Differ. Equ. Dyn. Syst. (2021). https://doi.org/10.1007/s12591-021-00568-6

  40. J.K. Hale, S.V.M. Lunel, Introduction to Functional Differential Equations (Springer, New York, 2013)

    MATH  Google Scholar 

  41. J. Ma, Q. Zhang, Q. Gao, Stability of a three-species symbiosis model with delays. Nonlinear Dyn. 67, 567–572 (2012)

    Article  MathSciNet  Google Scholar 

  42. S. Lynch, Dynamical Systems with Applications Using MATLAB (Springer, Berlin, 2004)

    Book  Google Scholar 

  43. M.D. McKay, R.J. Beckman, W.J. Conover, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 239–245 (1979)

    MathSciNet  MATH  Google Scholar 

  44. B.D. Hassard, N.D. Kazarinoff, Y.H. Wan, Theory and Applications of Hopf bifurcation (Cambridge University Press, Cambridge, 1981)

    MATH  Google Scholar 

Download references

Acknowledgements

We are very thankful to the anonymous reviewers for their insightful comments and suggestions, which helped us to improve the manuscript considerably and further open doors for future work.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

Not applicable.

Appendix

Appendix

1.1 Appendix A

Proof of Theorem 3.1

If \(\tau _1=0\), from (4) we get the eigenvalues as

$$\begin{aligned} \begin{aligned} \lambda _1&=-\frac{1}{2}\left\{ (\mu _1+\mu _2+\alpha )+ \sqrt{(\mu _1+\mu _2+\alpha )^2+4(a\alpha -(\mu _1 \mu _2+\mu _2 \alpha ))} \right\} ,\\ \lambda _2&=-\frac{1}{2}\left\{ (\mu _1+\mu _2+\alpha )-\sqrt{(\mu _1+\mu _2+\alpha )^2+4(a\alpha -(\mu _1 \mu _2+\mu _2 \alpha ))} \right\} , \end{aligned} \end{aligned}$$

where \(\mu _1+\mu _2+\alpha >0\). If \(\mathcal{R}_0<1\), then \(a\alpha -(\mu _1 \mu _2+\mu _2 \alpha )<0\) which implies that \(\lambda _1<0\) and \(\lambda _2<0\). Hence \(E_0\) is locally stable. On the other hand, if \(a\alpha -(\mu _1 \mu _2+\mu _2 \alpha )>0\) then \(\lambda _2>0\) and \(E_0\) is unstable. Following the above results, we have Theorem 3.1. \(\square \)

Proof of Theorem 3.2

If \(\tau _1\ne 0\), we assume \(\lambda =i\omega (\omega >0) \) be a root of (4), then from (4), separating real and imaginary parts we get

$$\begin{aligned} \alpha \omega \sin \omega \tau _1-(a\alpha -\mu _2\alpha )\cos \omega \tau _1= & {} \omega ^2-\mu _1\mu _2,\nonumber \\ (a\alpha -\mu _2\alpha )\sin \omega \tau _1+\alpha \omega \cos \omega \tau _1= & {} -\omega (\mu _1+\mu _2). \end{aligned}$$
(A.1)

Now, squaring and adding the equations of system (A.1) we get

$$\begin{aligned} \omega ^4+\omega ^2\left( \mu _1^2+\mu _2^2-2\alpha ^2\right) +\left\{ \mu _1^2\mu _2^2+2\alpha ^2(a-\mu _2)^2\right\} =0. \end{aligned}$$
(A.2)

Now, if

$$\begin{aligned} \mu _1^2+\mu _2^2-2\alpha ^2>0\quad \text {and}\quad \mu _1^2\mu _2^2+2\alpha ^2(a-\mu _2)^2>0, \end{aligned}$$
(A.3)

then all the roots of (A.2) will have negative real parts when \(\tau _1\in [0, \infty )\). Thus, the equilibrium \(E_0\) is locally asymptotically stable for all \(\tau _1\ge 0\).

If any of the above conditions (A.3) becomes less than zero, then equation (A.2) has positive root say \(\omega _0^2\). Therefore from (A.1), eliminating \(\sin \omega \tau _1\) and substituting \(\omega _0^2\), we have

$$\begin{aligned} \tau _{1_n}^{*}=\frac{1}{\omega _0}\cos ^{-1} \left[ \frac{(\omega _0^2-\mu _1\mu _2)(\alpha \mu _2-a\alpha )-\alpha \omega _0^2(\mu _1+\mu _2)}{\alpha ^2(\omega _0^2+a^2-2a\mu _2+\mu _2^2)} \right] +\frac{2n\pi }{\omega _0},\quad n=0, 1, 2,... \end{aligned}$$
(A.4)

Now, we define the function \(\theta (\tau _1)\in [0, 2\pi )\) s.t. \(\cos \theta (\tau _1)\) is given by the right-hand side of (A.4). To get the critical value of \(\tau _1\) where stability occurs we have to solve

$$\begin{aligned} S_n(\tau _1)=\tau _1-\tau _{1_n}^{*}. \end{aligned}$$
(A.5)

If, \(\lambda (\tau _1)\), solution of (4) satisfying \(Re \lambda (\tau _{1_n}^{*})=0\) and Im \(\lambda (\tau _{1_n}^{*})=\omega _0\), implies

$$\begin{aligned} \left[ \frac{\hbox {d}}{\hbox {d}\tau _1}(Re \lambda ) \right] \ne 0. \end{aligned}$$
(A.6)

Thus, we see that Hopf bifurcation occurs at \(\tau _1=\tau _{1_0}^{*}\). Following the above results, we have Theorem 3.2. \(\square \)

1.2 Appendix B

$$\begin{aligned} \begin{aligned} p_1&=2\alpha (\tau _1+\tau _2)+2\gamma _1\tau _1-\frac{2\beta _1S_1^*}{A_1}+\frac{2R_1\tau _2}{A_2} ,\quad p_2=2\alpha \tau _1+2\left( \gamma _2\tau _1+\frac{R_2\tau _2}{B_1}\right) \nonumber \\ \\ p_3&=\frac{2\beta _1I_1^*}{A_1}\tau _1 ,\quad p_4=\frac{2\beta _2}{B_2}\tau _2, \quad p_5=\left( \alpha +\gamma _2+\frac{R_2}{B_1}\right) \tau _1-\mu _1-\mu _2+\frac{\beta _1I_1^*}{A_1}\tau _2 \nonumber \\ \nonumber \\ p_6&=\alpha (\tau _1+\tau _2)+\frac{\beta _1}{A_1}(S_1^*\tau _2-I_1^*\tau _1)-\left( \alpha +\frac{R_1}{A_2}+\gamma _1+\mu _1+\mu _3\right) \nonumber \\ \nonumber \\ p_7&=\frac{\beta _1I_2^*}{B_2}\tau _2+\gamma _1+\frac{R_1}{A_2}-\frac{\beta _1(S_1^*+I_1^*)}{A_1}\tau _1+\gamma _2+\mu _4+\frac{R_2}{B_1}+\frac{\beta _1S_2^*}{B_2}\tau _1-\mu _1 \nonumber \\ \nonumber \\ p_8&=\frac{\beta _1(I_1^*+S_1^*)}{A_1}\tau _1+\alpha +\gamma _2+\frac{R_2}{B_1}-\gamma _1\tau _2-\mu _3\tau _1-\mu _2-\frac{R_1}{A_2}\tau _2 \nonumber \\ \nonumber \\ p_9&=\alpha +\frac{\beta _2S_2^*}{B_2}(\tau _1+2\tau _2)-\gamma _2-\mu _2-\mu _4-\frac{R_2}{B_1} \nonumber \\ \nonumber \\ p_{10}&=\frac{\beta _1(S_1^*+I_1^*)}{A_1}(2\tau _1+\tau _2)-\gamma _2-\mu _4-\frac{R_2}{B_1}+\frac{\beta _2(I_2^*+S_2^*)}{B_2}(\tau _1-\tau _2)-\gamma _1-\mu _3 \end{aligned} \end{aligned}$$
$$\begin{aligned} w_1(z)(t)= & {} \bar{X}^2+\left\{ -\alpha ^2+\alpha \mu _1-\alpha \gamma _1+\frac{\alpha _1 \beta _1}{A_1}(S_1^*+I_1^*)-\frac{\alpha _1 R_1}{A_2}\right\} \int _{t-\tau _1}^{t}\int _{s}^{t}X^2(l)\hbox {d}l \hbox {d}s \\&+\left\{ \frac{R_1\alpha -R_1\mu _1+R_1\gamma _1}{A_2}-\frac{R_1\beta _1}{A_1A_2}(S_1^*+I_1^*)+\frac{R_1^2}{A_2^2}\right\} \int _{t-\tau _2}^{t}\int _{s}^{t}U^2(l)\hbox {d}l \hbox {d}s, \nonumber \\ \end{aligned}$$
$$\begin{aligned} w_2(z)(t)= & {} \bar{Y}^2+\left\{ \alpha ^2-\alpha \mu _2+\alpha \gamma _2+\frac{\alpha R_2}{B_1}\right\} \int _{t-\tau _1}^{t}\int _{s}^{t}X^2(l)\hbox {d}l \hbox {d}s \nonumber \\&+\left\{ \frac{R_2\alpha -R_2\mu _2+R_2^2}{B_1}+\gamma _2 R_2\right\} \int _{t-\tau _2}^{t}\int _{s}^{t}V^2(l)\hbox {d}l \hbox {d}s,\nonumber \\ \\ w_3(z)(t)= & {} \bar{U}^2+\left\{ \frac{R_1(\gamma _1+\mu _3)}{A_2}+\frac{R_1^2}{A_2^2}-\frac{R_1\beta _1(I_1^*+S_1^*)}{A_1A_2} \right\} \int _{t-\tau _2}^{t}\int _{s}^{t}U^2(l)\hbox {d}l \hbox {d}s, \nonumber \\ \nonumber \\ w_4(z)(t)= & {} \bar{V}^2+\left\{ \frac{R_2(\gamma _2+\mu _4)}{B_1}+\frac{R_2^2}{B_1^2}+\frac{R_2\beta _2(I_2^*+S_2^*)}{B_1B_2} \right\} \int _{t-\tau _2}^{t}\int _{s}^{t}V^2(l)\hbox {d}l \hbox {d}s, \nonumber \\ \end{aligned}$$
$$\begin{aligned} w_5(z)(t)= & {} \bar{X}\bar{Y}+\left\{ \frac{\alpha }{2}\left( \gamma _1-\gamma _2-\mu _1-\mu _2-\frac{\beta _1(S_1^*+I_1^*)}{A_1}+\frac{R_1}{A_2}\right) -\frac{\alpha R_2}{B_1}\right\} \int _{t-\tau _1}^{t}\int _{s}^{t}X^2(l)\hbox {d}l \hbox {d}s \nonumber \\&+\left\{ \frac{R_1}{2A_2}(\alpha -\mu _2+\gamma _2)+\frac{R_2^2}{2A_2B_1}\right\} \int _{t-\tau _2}^{t}\int _{s}^{t}U^2(l)\hbox {d}l \hbox {d}s\nonumber \\&+\left\{ \frac{R_2}{2B_1}\left( \alpha -\mu _1+\gamma _1+\frac{R_1}{A_2}-\frac{\beta _1(S_1^*+I_1^*)}{A_1}\right) \right\} \int _{t-\tau _2}^{t}\int _{s}^{t}V^2(l)\hbox {d}l \hbox {d}s,\nonumber \\ \nonumber \\ w_6(z)(t)= & {} \bar{X}\bar{U}+\frac{\alpha }{2}\left( \gamma _1+\mu _3-I_1^*+\frac{R_1}{A_2}-\frac{\beta _1S_1^*}{A_1}\right) \int _{t-\tau _1}^{t}\int _{s}^{t}X^2(l)\hbox {d}l \hbox {d}s \nonumber \\&+\frac{R_1}{2A_2}\left( \mu _1+I_1^*-\mu _3-\alpha -2\gamma _1-\frac{R_1}{A_2}+\frac{2\beta _1S_1^*+\beta _1I_1^*}{A_1} \right) \int _{t-\tau _2}^{t}\int _{s}^{t}U^2(l)\hbox {d}l \hbox {d}s, \nonumber \\ \end{aligned}$$
$$\begin{aligned} w_7(z)(t)= & {} \bar{X}\bar{V}+\frac{\alpha }{2}\left( \gamma _2+\mu _4+\frac{R_2}{B_1}+\frac{\beta _1S_2^*}{B_2}-\frac{\beta _1I_2^*}{B_2}\right) \int _{t-\tau _1}^{t}\int _{s}^{t}X^2(l)\hbox {d}l \hbox {d}s \nonumber \\&+\frac{R_1}{2A_2}\left( \frac{\beta _1I_2^*}{B_2}-\gamma _2-\mu _4-\frac{R_2}{B_1}-\frac{\beta _1S_2^*}{B_2} \right) \int _{t-\tau _2}^{t}\int _{s}^{t}U^2(l)\hbox {d}l \hbox {d}s \nonumber \\&+\frac{R_2}{2B_1}\left( -\alpha +\mu _1+\frac{\beta _1I_1^*}{A_1}-\gamma _1-\frac{R_1}{A_2}+\frac{\beta _1S_1^*}{A_1} \right) \int _{t-\tau _2}^{t}\int _{s}^{t}V^2(l)\hbox {d}l \hbox {d}s, \nonumber \\ \end{aligned}$$
$$\begin{aligned} w_8(z)(t)= & {} \bar{Y}\bar{U}+\frac{\alpha }{2}\left( -\gamma _1-\mu _3-\frac{R_1}{A_2}+\frac{\beta _1S_1^*}{A_1}+\frac{\beta _1I_1^*}{A_1}\right) \int _{t-\tau _1}^{t}\int _{s}^{t}X^2(l)\hbox {d}l \hbox {d}s \nonumber \\&+\frac{R_1}{2A_2}\left( \mu _2-\alpha -\gamma _2-\frac{R_2}{B_1}\right) \int _{t-\tau _2}^{t}\int _{s}^{t}U^2(l)\hbox {d}l \hbox {d}s \nonumber \\&+\frac{R_2}{2B_1}\left( \frac{\beta _1S_1^*}{A_1}-\gamma _1-\mu _3-\frac{R_1}{A_2}-\frac{\beta _1I_1^*}{A_1}\right) \int _{t-\tau _2}^{t}\int _{s}^{t}V^2(l)dl ds, \end{aligned}$$
$$\begin{aligned} w_9(z)(t)= & {} \bar{Y}\bar{V}+\frac{\alpha }{2}\left( -\gamma _2-\mu _4-\frac{R_2}{B_1}+\frac{\beta _2S_2^*}{B_2}+\frac{\beta _2I_2^*}{B_2}\right) \int _{t-\tau _1}^{t}\int _{s}^{t}X^2(l)\hbox {d}l \hbox {d}s \nonumber \\&+\frac{R_2}{2B_1}\left( -2\gamma _2-\mu _4-2\frac{R_2}{B_1}+\frac{\beta _2S_2^*}{B_2}+\frac{\beta _2I_2^*}{B_2}-\alpha +\mu _2 \right) \int _{t-\tau _2}^{t}\int _{s}^{t}V^2(l)\hbox {d}l \hbox {d}s, \nonumber \\ \nonumber \\ w_{10}(z)(t)= & {} \bar{U}\bar{V}+\frac{R_1}{2A_2}\left( \gamma _2+\mu _4+\frac{R_2}{B_1}-2\frac{\beta _2S_2^*}{B_2}\right) \int _{t-\tau _2}^{t}\int _{s}^{t}U^2(l)\hbox {d}l \hbox {d}s \nonumber \\&+\frac{R_2}{2B_1}\left( -\frac{\beta _1I_1^*}{A_1}+\gamma _1+\mu _3+\frac{R_1}{A_2}-\frac{\beta _1S_1^*}{A_1}\right) \int _{t-\tau _2}^{t}\int _{s}^{t}V^2(l)dl ds, \end{aligned}$$

where

$$\begin{aligned} A_1= & {} 1+\alpha _1+\alpha _1I_1^*,\nonumber \\ A_2= & {} 1+k_1+k_1^2I_1^*+2k_1I_1^*,\nonumber \\ B_1= & {} 1+k_2+k_2^2I_2^*+2k_2I_2^*,\nonumber \\ B_2= & {} 1+\alpha _2+\alpha _2I_2^*, \end{aligned}$$
$$\begin{aligned} \Lambda _1= & {} p_1\left\{ -2(\alpha +\mu _1)-\frac{2\beta _1I_1^*}{A_1}+\alpha (\alpha +\mu _1)\tau _1+\frac{\alpha _1\beta _1I_1^*\tau _1}{A_1}-\frac{R_1(\alpha +\mu _1)\tau _2}{A_2}-\frac{R_1\beta _1I_1^*}{A_1A_2}\right\} \nonumber \\&+p_1\tau _1\left( -\alpha ^2+\alpha \mu _1-\alpha \gamma _1+\frac{\alpha _1\beta _1(S_1^*+I_1^*)}{A_1}-\frac{\alpha _1R_1}{A_2} \right) +p_2\left( \alpha ^2\tau _1+\frac{\alpha R_2\tau _2}{B_1}\right) \nonumber \\&+p_2\tau _1\left( \alpha ^2-\alpha \mu _2+\alpha \gamma _2+\frac{\alpha R_2}{B_1} \right) -p_3\frac{R_1\beta _1I_1^*\tau _2}{A_1A_2}\nonumber \\&+p_5\left\{ \alpha -\frac{\alpha (\mu _1+\alpha )\tau _1}{2}-\frac{\alpha \beta _1I_1^*\tau _1}{2A_1}-\frac{\alpha ^2\tau _1}{2}+\frac{\alpha R_1\tau _2}{2A_2}-\frac{R_2\tau _2(\alpha +\mu _1)}{2B_1}-\frac{\beta _1R_2\tau _2 I_1^*}{2A_1B_1}\right\} \nonumber \\&+p_5\frac{\alpha \tau _1}{2}\left( \gamma _1-\gamma _2-\mu _1-\mu _2-\frac{\beta _1 (S_1^*+I_1^*)}{A_1}+\frac{R_1}{A_2}-\frac{R_2}{B_1}\right) +p_6\left\{ \frac{\beta _1I_1^*}{A_1}-\frac{\alpha \tau _1 I_1^*}{2}\right\} \nonumber \\&+p_6\left\{ \frac{R_1\tau _2}{2A_2}\left( I_1^*+\alpha +\mu _1+\frac{\beta _1I_1^*}{A_1} \right) +\frac{\alpha \tau _1}{2}\left( \gamma _1+\mu _3-I_1^*+\frac{R_1}{A_2}-\frac{\beta _1S_1^*}{A_1}\right) \right\} \nonumber \\&+p_7\left\{ \frac{R_2\tau _2}{2B_1}\left( \alpha +\mu _1+\frac{\beta _1I_1^*}{A_1}\right) +\frac{\alpha \tau _1}{2}\left( \gamma _2+\mu _4+\frac{R_2}{B_1}+\frac{\beta _1S_2^*}{B_2} \right) -\frac{\alpha \beta _1I_2^*\tau _1}{2B_2}\right\} \nonumber \\&+p_8\left\{ \frac{\alpha \beta _1I_1^*\tau _1}{2A_1}+\frac{R_2\beta _1I_1^*\tau _2}{2A_1B_1}-\frac{\alpha R_1\tau _2}{2A_2}-\frac{\alpha \tau _1}{2}(\gamma _1+\mu _3)-\frac{\alpha R_1\tau _1}{2A_2}+\frac{\alpha \beta _1S_1^*\tau _1}{2A_1}+\frac{\alpha \beta _1\tau _1I_1^*}{2A_1}\right\} \nonumber \\&+p_9\left\{ -\frac{\alpha R_2\tau _2}{2B_1}+\frac{\alpha \tau _1}{2}\left( -\gamma _2-\mu _4-\frac{R_2}{B_1}+\frac{\beta _2(S_2^*+I_2^*)}{B_2} \right) \right\} -p_{10}\frac{R_2\beta _1I_1^*\tau _2}{2A_1B_1}, \end{aligned}$$
$$\begin{aligned} \Lambda _2= & {} p_1\left\{ -\alpha ^2\tau _1+\frac{R_1\alpha \tau _2}{A_2} \right\} -p_2\left( 2\mu _2+\alpha \mu _2\tau _1+\frac{\mu _2R_2\tau _2}{B_1} \right) +p_4\frac{R_2\beta _2I_2^*\tau _2}{B_1B_2}-p_6\frac{\alpha R_1\tau _2}{2A_2}+p_8\frac{\mu _2R_1\tau _2}{2A_2}\nonumber \\&+p_5\left\{ \alpha +\frac{\alpha ^2\tau _1}{2}+\frac{\alpha \mu _2\tau _1}{2}-\frac{R_1\mu _2\tau _2}{2A_2}+\frac{R_2\alpha \tau _2}{2B_1}\right\} +p_7\left( -\frac{\alpha \beta _1 I_2^*\tau _1}{2B_2}+\frac{R_1\beta _1I_2^*\tau _2}{2A_2B_2}-\frac{\alpha R_2\tau _2}{2B_1}\right) \nonumber \\&+p_9\left( \frac{\beta _2I_2^*}{B_2}+\frac{\alpha \beta _2I_2^*\tau _1}{2B_2}+\frac{R_2\beta _2I_2^*\tau _2}{2B_1B_2}+\frac{\mu _2R_2\tau _2}{2B_1} \right) -p_{10}\frac{R_1\beta _2I_2^*\tau _2}{2A_2B_2}, \end{aligned}$$
$$\begin{aligned} \Lambda _3= & {} p_1\left\{ -\alpha \gamma _1\tau _1+\frac{\alpha _1\beta _1S_1^*\tau _1}{A_1}-\frac{\alpha _1R_1\tau _1}{A_2}+\frac{R_1\gamma _1\tau _2}{A_2}-\frac{R_1\beta _1S_1^*\tau _2}{A_1A_2}+\frac{R_1^2\tau _2}{A_2^2}\right\} \nonumber \\&+p_1\tau _2\left( \frac{\alpha R_1}{A_2}-\frac{R_1\mu _1}{A_2}+\frac{R_1\gamma _1}{A_2}-\frac{R_1\beta _1(S_1^*+I_1^*)}{A_1A_2}+\frac{R_1^2}{A_2^2} \right) +p_3\left( -2(\gamma _1+\mu _3)-\frac{2R_1}{A_2}+\frac{2\beta _1S_1^*}{A_1}\right) \nonumber \\&+p_3\left\{ \frac{2R_1\tau _2}{A_2}\left( \gamma _1+\mu _3+\frac{R_1}{A_2}-\frac{\beta _1S_1^*}{A_1}\right) -\frac{\beta _1R_1\tau _2I_1^*}{A_1A_2} \right\} +p_5\left\{ \frac{R_1\tau _2}{2A_2}(\alpha -\mu _2+\gamma _2)+\frac{R_2^2\tau _2}{2A_2B_1}\right\} \nonumber \\&+p_5\left( \frac{\alpha \gamma _1\tau _1}{2}-\frac{\alpha \beta _1S_1^*\tau _1}{2A_1}+\frac{\alpha R_1\tau _1}{2A_2}+\frac{R_2\gamma _1\tau _2}{2B_1}-\frac{R_2\beta _1S_1^*\tau _2}{2A_1B_1}+\frac{R_1R_2\tau _2}{2A_2B_1}\right) \nonumber \\&+p_6\left\{ \frac{\alpha \tau _1}{2}\left( \gamma _1+\mu _3+\frac{R_1}{A_2}-\frac{\beta _1S_1^*}{A_1}\right) +\frac{R_1\tau _2}{2A_2}\left( \frac{3\beta _1S_1^*}{A_1}-4\gamma _1-\alpha -2\mu _3+\mu _1+I_1^*-\frac{2R_1}{A_2}+\frac{\beta _1(S_1^*+I_1^*)}{A_1}\right) \right\} \nonumber \\&+p_7\left\{ -\frac{R_2\tau _2}{2B_1}\left( \gamma _1-\frac{\beta _1S_1^*}{A_1}+\frac{R_1}{A_2}\right) +\frac{R_1\beta _1I_2^*\tau _2}{2A_2B_2}-\frac{R_1\tau _2}{2A_2}\left( \gamma _2+\mu _4+\frac{R_2}{B_1}+\frac{\beta _1S_2^*}{B_2}\right) \right\} \nonumber \\&+p_8\left\{ \frac{R_1}{2A_2}\left( \mu _2\tau _2-\alpha \tau _2-\gamma _2\tau _2-\frac{R_2\tau _2}{B_1}-\alpha \tau _1\right) -\frac{\alpha \tau _1(\gamma _1+\mu _3)}{2}+\frac{\alpha \beta _1S_1^*\tau _1}{2A_1}-\frac{R_2\tau _2}{2B_1}(\gamma _1+\mu _3)\right\} \nonumber \\&+p_8\frac{R_2\tau _2}{2B_1}\left( \frac{R_1}{A_2}-\frac{\beta _1S_1^*}{A_1}\right) +p_{10}\left\{ \frac{R_2}{2B_1}(\gamma _1\tau _2+\mu _3\tau _2) +\frac{R_1R_2\tau _2}{A_2B_1}+\frac{R_1}{2A_2}(\gamma _2\tau _2+\mu _4\tau _2)\right\} \nonumber \\&-p_{10}\left( \frac{R_2\beta _1S_1^*\tau _2}{2A_1B_1}+\frac{R_1\beta _2S_2^*\tau _2}{2A_2B_1}+\frac{R_1\beta _2S_2^*\tau _2}{2A_2B_2} \right) , \end{aligned}$$
$$\begin{aligned} \Lambda _4= & {} p_1\left\{ -\alpha ^2\tau _1+\frac{R_1\alpha \tau _2}{A_2} \right\} +p_2\left\{ (\alpha \tau _1+2R_2\tau _2)\left( \gamma _2+\frac{R_2}{B_1}\right) +\frac{R_2\tau _2}{B_1}(\alpha -\mu _2) \right\} \nonumber \\&+p_4\left\{ \left( \gamma _2+\mu _4+\frac{R_2}{B_1}+\frac{\beta _2S_2^*}{B_2}\right) \left( \frac{R_2\tau _2}{B_1}-2\right) +\frac{R_2\beta _2(S_2^*+I_2^*)}{B_1B_2}+\frac{R_2}{B_1}(\gamma _2+\mu _4)+\frac{R_2^2}{B_1^2} \right\} \nonumber \\&+p_5\left\{ \frac{\alpha ^2\tau _1}{2}-\frac{\alpha \gamma _2\tau _1}{2}-\frac{R_2\alpha \tau _1}{B_1}+\frac{R_1\gamma _2\tau _2}{2A_2}+\frac{R_2^2\tau _2}{2A_2B_1}+\frac{\alpha R_2\tau _2}{2B_1} \right\} \nonumber \\&+p_5\frac{R_2\tau _2}{2B_1}\left( \alpha -\mu _1+\gamma _1-\frac{\beta _1(S_1^*+I_1^*)}{A_1}+\frac{R_1}{A_2}\right) -p_6\frac{\alpha R_1\tau _2}{2A_2}+p_7\left( \alpha -\frac{3\alpha R_2 \tau _2}{2B_1} \right) \nonumber \\&+p_7\left\{ \left( \frac{\alpha \tau _1}{2}-\frac{R_1\tau _2}{2A_2}\right) \left( \gamma _2+\mu _4+\frac{R_2}{B_1}+\frac{\beta _1S_2^*}{B_2} \right) +\frac{R_2\tau _2}{2B_1}\left( \alpha +\mu _1+\frac{\beta _1I_1^*}{A_1}+\gamma _1+\frac{R_1}{A_2}-\frac{\beta _1S_1^*}{A_1}\right) \right\} \nonumber \\&-p_8\left\{ \frac{R_1\tau _2}{2A_2}\left( \gamma _2+\frac{R_2}{B_1}\right) +\frac{R_2\tau _2}{2B_1}\left( \gamma _1+\mu _3+\frac{R_1}{A_2}-\frac{\beta _1(S_1^*+I_1^*)}{A_1}\right) \right\} +p_9\left( \gamma _2+\frac{R_2}{B_1}+\frac{\beta _2R_2S_2^*\tau _2}{B_1B_2} \right) \nonumber \\&+p_9\left\{ -\frac{\alpha \tau _1(\gamma _2+\mu _4)}{2}-\frac{1}{2B_1}\left( \alpha \tau _1 R_2+4\gamma _2\tau _2 R_2+2\mu _4\tau _2 R_2+\alpha R_2\tau _2-\mu _2 R_2\tau _2 \right) +\frac{\alpha \beta _2 S_2^*\tau _1}{2B_2} \right\} \nonumber \\&+p_9\left( -\frac{2R_2^2\tau _2}{B_1^2}+\frac{\beta _2 R_2I_2^*\tau _2}{2B_1B_2}\right) +p_{10}\left( \frac{R_1\tau _2(\gamma _2+\mu _4)}{2A_2}+\frac{R_2\tau _2(\gamma _1+\mu _3)}{2B_1}-\frac{R_2\beta _1\tau _2(S_1^*+I_1^*)}{2A_1B_1} \right) \nonumber \\&+p_{10}\left( \frac{R_1R_2\tau _2}{A_2B_1}-\frac{R_1\beta _2S_2^*\tau _2}{2A_2B_2}\right) . \end{aligned}$$

1.3 Appendix C

$$\begin{aligned} A_{11}= & {} a_{11}+a_{22}+a_{33}+a_{44} ,\nonumber \\ A_{12}= & {} a_{11}a_{22}-a_{13}a_{31}+a_{11}a_{33}+a_{22}a_{33}-a_{24}a_{42}+a_{11}a_{44}+a_{22}a_{44}+a_{33}a_{44} ,\nonumber \\ A_{13}= & {} a_{13}a_{22}a_{31}-a_{11}a_{22}a_{33}+a_{11}a_{24}a_{42}+a_{24}a_{33}a_{42}-a_{11}a_{22}a_{44}+a_{13}a_{31}a_{44}-a_{11}a_{33}a_{44}-a_{22}a_{33}a_{44} ,\nonumber \\ A_{14}= & {} a_{13}a_{24}a_{31}a_{42}-a_{11}a_{24}a_{33}a_{42}-a_{13}a_{22}a_{31}a_{44}+a_{11}a_{22}a_{33}a_{44}, \end{aligned}$$
$$\begin{aligned} B_{11}= & {} -\alpha ,\nonumber \\ B_{12}= & {} -a_{12}\alpha -a_{22}\alpha -a_{33}\alpha -a_{44}\alpha ,\nonumber \\ B_{13}= & {} a_{12}a_{33}\alpha +a_{22}a_{33}\alpha -a_{12}a_{42}\alpha -a_{24}a_{42}\alpha +a_{12}a_{44}\alpha +a_{22}a_{44}\alpha +a_{33}a_{44}\alpha ,\nonumber \\ B_{14}= & {} a_{12}a_{33}a_{42}\alpha +a_{24}a_{33}a_{42}\alpha -a_{12}a_{33}a_{44}\alpha -a_{22}a_{33}a_{44}\alpha . \end{aligned}$$
$$\begin{aligned} C_{11}= & {} \frac{R_2}{B_1}+\frac{R_1}{A_2} ,\nonumber \\ C_{12}= & {} -\frac{R_2}{B_1}\left( a_{11}+a_{22}+a_{33}+a_{42}\right) -\frac{R_1}{A_2}\left( a_{11}+a_{22}+a_{31}+a_{44} \right) ,\nonumber \\ C_{13}= & {} \frac{R_2}{B_1}\left( a_{11}a_{22}-a_{13}a_{31} +a_{11}a_{33}+a_{22}a_{33}+a_{11}a_{42}+a_{33}a_{42}\right) \nonumber \\&+\frac{R_1}{A_2}\left( a_{11}a_{22}+a_{22}a_{31}-a_{24}a_{42}+a_{11}a_{44}+a_{22}a_{44} +a_{31}a_{44}\right) ,\nonumber \\ C_{14}= & {} \frac{R_1}{A_2}\left( a_{11}a_{24}a_{42}+a_{24}a_{31}a_{42}- a_{11}a_{22}a_{44}-a_{22}a_{31}a_{44}\right) \nonumber \\&+\frac{R_2}{B_1}\left( a_{13}a_{22}a_{31}-a_{11}a_{22}a_{33}+a_{13}a_{31}a_{42}-a_{11}a_{33}a_{42} \right) . \end{aligned}$$
$$\begin{aligned} D_{11}= & {} \frac{R_1R_2}{A_2B_1} ,\nonumber \\ D_{12}= & {} -\frac{R_1R_2}{A_2B_1}\left( a_{11}+a_{22}+a_{31}+a_{42}\right) ,\nonumber \\ D_{13}= & {} \frac{R_1R_2}{A_2B_1}\left( a_{11}a_{22}+a_{22}a_{31}+a_{11}a_{42}+a_{31}a_{42}\right) . \end{aligned}$$
$$\begin{aligned} E_{11}= & {} \alpha \left( \frac{R_1}{A_2}+\frac{R_2}{B_1}\right) ,\nonumber \\ E_{12}= & {} -\frac{R_1\alpha }{A_2}\left( a_{12}+a_{22}+a_{44}\right) -\frac{R_2\alpha }{B_1}\left( a_{12}+a_{22}+a_{33}-a_{42}\right) ,\nonumber \\ E_{13}= & {} \frac{R_1\alpha }{A_2}\left( a_{22}a_{44}+a_{12}a_{44}-a_{24}a_{42}-a_{12}a_{42} \right) +\frac{R_2\alpha }{B_1}\left( a_{12}a_{33}+a_{22}a_{33}+a_{33}a_{42}\right) ,\nonumber \\ F_{11}= & {} \frac{R_1R_2\alpha }{A_2B_1} ,\nonumber \\ F_{12}= & {} -\frac{R_1R_2\alpha }{A_2B_1}\left( a_{12}+a_{22}+a_{42}\right) . \end{aligned}$$

Proof of Theorem 4.1

For \(\tau _1\ne 0\) but \(\tau _2=0\). Equation (9) can be written as:

$$\begin{aligned} \left\{ \lambda ^4+\mathcal {M}_1\lambda ^3+\mathcal {M}_2\lambda ^2+\mathcal {M}_3\lambda +\mathcal {M}_4\right\} +e^{-\lambda \tau _1}\left\{ \mathcal {N}_1\lambda ^3+\mathcal {N}_2\lambda ^2+\mathcal {N}_3\lambda +\mathcal {N}_4\right\} =0, \end{aligned}$$
(C.1)

where \(\mathcal {M}_1= A_{11}+C_{11}\), \(\mathcal {M}_2=A_{12}+C_{12}+D_{11} \), \(\mathcal {M}_3=A_{13}+C_{13}+D_{12}\), \(\mathcal {M}_4=A_{14}+C_{14}+D_{13}\), and \(\mathcal {N}_1=B_{11}\), \(\mathcal {N}_2=B_{12}+E_{11}\), \(\mathcal {N}_3=B_{13}+E_{12}+F_{11}\), \(\mathcal {N}_4=B_{14}+E_{13}+F_{12}\). Let \(\lambda =i\omega >0\), then from (C.1) separating real and imaginary part we get

$$\begin{aligned} \omega ^4-\mathcal {M}_2\omega ^2+\mathcal {M}_4=(\mathcal {N}_2\omega ^2-\mathcal {N}_4)\cos \omega \tau _1+(\mathcal {N}_1\omega ^3-\mathcal {N_3}\omega )\sin \omega \tau _1, \end{aligned}$$
(C.2)
$$\begin{aligned} \mathcal {M}_3\omega -\mathcal {M}_1\omega ^3=(\mathcal {N}_1\omega ^3-\mathcal {N}_3\omega )\cos \omega \tau _1-(\mathcal {N}_2\omega ^2-\mathcal {N}_4)\sin \omega \tau _1. \end{aligned}$$
(C.3)

Squaring (C.2) and (C.3) and then adding yields

$$\begin{aligned} \Omega ^4+\bar{\mathcal {E}}_{13}\Omega ^3+\bar{\mathcal {E}}_{12}\Omega ^2++\bar{\mathcal {E}}_{11}\Omega +\bar{\mathcal {E}}_{10}=0, \end{aligned}$$
(C.4)

where \(\Omega =\omega ^2\), \(\bar{\mathcal {E}}_{10}=\mathcal {M}_4^2-\mathcal {N}_4^2\), \(\bar{\mathcal {E}}_{11}=\mathcal {M}_3^2+2\mathcal {N}_2\mathcal {N}_4-\mathcal {N}_3^2-2\mathcal {M}_2\mathcal {M}_4\), \(\bar{\mathcal {E}}_{12}=\mathcal {M}_2^2+2\mathcal {M}_4-\mathcal {N}_2^2-2\mathcal {M}_1\mathcal {M}_3+2\mathcal {N}_1\mathcal {N}_3\) and \(\bar{\mathcal {E}}_{13}=\mathcal {M}_1^2-\mathcal {N}_1^2-2\mathcal {M}_2\).

\(H_{11}\): Assume that the equation (C.4) has a positive root say, \(\Omega _0\). Eliminating \(\sin \omega \tau _1\) from (C.2) and (C.3) and substituting \(\omega =\omega _0=\sqrt{\Omega _0}\), where \(\Omega _0\) is a positive root of (C.4), we get

$$\begin{aligned}&\cos \omega _0\tau _1=\frac{(\omega _0^4-\mathcal {M}_2\omega _0^2+\mathcal {M}_4)(\mathcal {N}_2\omega _0^2-\mathcal {N}_4)+(\mathcal {M}_3\omega _0-\mathcal {M}_1\omega _0^3)(\mathcal {N}_1\omega _0^3-\mathcal {N}_3\omega _0)}{(\mathcal {N}_2\omega _0^2-\mathcal {N}_4)^2+(\mathcal {N}_1\omega _0^3-\mathcal {N}_3\omega _0)^2}\nonumber \\&\implies \tau _{1_n}=\frac{1}{\omega _0}\times \left\{ \arccos \left[ \frac{\mathcal {F}_1(\omega _0)}{\mathcal {F}_2(\omega _0)} \right] \right\} +\frac{2n\pi }{\omega _0}, \quad n=0, 1, 2, ... \end{aligned}$$
(C.5)

with \(\mathcal {F}_1(\omega _0)=(\omega _0^4-\mathcal {M}_2\omega _0^2+\mathcal {M}_4)(\mathcal {N}_2\omega _0^2-\mathcal {N}_4)+(\mathcal {M}_3\omega _0-\mathcal {M}_1\omega _0^3)(\mathcal {N}_1\omega _0^3-\mathcal {N}_3\omega _0)\),

\(\mathcal {F}_2(\omega _0)=(\mathcal {N}_2\omega _0^2-\mathcal {N}_4)^2+(\mathcal {N}_1\omega _0^3-\mathcal {N}_3\omega _0)^2\).

We define the function \(\theta (\tau _1)\in [0, 2\pi )\) such that \(\cos \theta (\tau _1)\) is given by the right-hand side of (C.5). Then solving

$$\begin{aligned} \bar{S}_n(\tau _1)=\tau _1-\tau _{1_n}, \end{aligned}$$

we get the \(\tau _1\), at which stability occurs. Differentiating (C.1) with respect to \(\tau _1\) and substituting \(\lambda =i\omega _0\), and simplifying, one obtains

$$\begin{aligned} Re\left[ \frac{\hbox {d}\lambda }{\hbox {d}\tau _1}\right] ^{-1}_{\lambda =i\omega _0}=\frac{F_1^{'}(\Omega _0)}{\mathcal {F}_2(\omega _0^2)}. \end{aligned}$$
(C.6)

Therefore, \(Re\left[ \frac{\hbox {d}\lambda }{\hbox {d}\tau _1}\right] ^{-1}_{\lambda =i\omega _0}\ne 0\) if the condition \(H_{12}\): \(F_1^{'}(\Omega _0)=\frac{\hbox {d}F_1(\Omega )}{\hbox {d}\Omega }|_{\Omega =\Omega _0}\ne 0\) holds,

where \(F_1(\Omega )=\Omega ^4+\bar{\mathcal {E}}_{13}\Omega ^3+\bar{\mathcal {E}}_{12}\Omega ^2++\bar{\mathcal {E}}_{11}\Omega +\bar{\mathcal {E}}_{10}\).

Thus, with the help of Hopf bifurcation theorem [44], we obtain the result of Theorem 4.1 if the conditions \(H_{11}\): and \(H_{12}\): hold. \(\square \)

Proof of Theorem 4.2

For \(\tau _1=0\) but \(\tau _2\ne 0\).

From (9), we get

$$\begin{aligned} \left\{ \lambda ^4+\bar{\mathcal {M}_1}\lambda ^3+\bar{\mathcal {M}_2}\lambda ^2+\bar{\mathcal {M}_3}\lambda +\bar{\mathcal {M}_4}\right\}+ & {} e^{-\lambda \tau _2}\left\{ \bar{\mathcal {N}_1}\lambda ^3+\bar{\mathcal {N}_2}\lambda ^2+\bar{\mathcal {N}_3}\lambda +\bar{\mathcal {N}_4}\right\} \nonumber \\+ & {} e^{-2\lambda \tau _2}\left\{ \bar{\mathcal {P}_1}\lambda ^2+\bar{\mathcal {P}_2}\lambda +\bar{\mathcal {P}_3}\right\} =0, \end{aligned}$$
(C.7)

where \(\bar{\mathcal {M}_1}=A_{11}+B_{11}\), \(\bar{\mathcal {M}_2}=A_{12}+B_{12}\), \(\bar{\mathcal {M}_3}=A_{13}+B_{13}\), \(\bar{\mathcal {M}_4}=A_{14}+B_{14}\), \(\bar{\mathcal {N}_1}=C_{11}\), \(\bar{\mathcal {N}_2}=C_{12}+E_{11}\), \(\bar{\mathcal {N}_3}=C_{13}+E_{12}\), \(\bar{\mathcal {N}_4}=C_{14}+E_{13}\) and \(\bar{\mathcal {P}_1}=D_{11}\), \(\bar{\mathcal {P}_2}=D_{12}+F_{11}\), \(\bar{\mathcal {P}_3}=D_{13}+F_{12}\).

Multiplying \(e^{\lambda \tau _2}\) on both sides of (C.7), we find

$$\begin{aligned} \left\{ \lambda ^4+\bar{\mathcal {M}_1}\lambda ^3+\bar{\mathcal {M}_2}\lambda ^2+\bar{\mathcal {M}_3}\lambda +\bar{\mathcal {M}_4}\right\} e^{\lambda \tau _2}+ & {} \left\{ \bar{\mathcal {N}_1}\lambda ^3+\bar{\mathcal {N}_2}\lambda ^2+\bar{\mathcal {N}_3}\lambda +\bar{\mathcal {N}_4}\right\} \nonumber \\+ & {} e^{-\lambda \tau _2}\left\{ \bar{\mathcal {P}_1}\lambda ^2+\bar{\mathcal {P}_2}\lambda +\bar{\mathcal {P}_3}\right\} =0. \end{aligned}$$
(C.8)

Let \(\lambda =i\omega (\omega >0)\) be a root of Eq. (C.8), then

$$\begin{aligned} G_1(\omega )\cos \omega \tau _2+G_2(\omega )\sin \omega \tau _2= & {} G_3(\omega ),\nonumber \\ G_4(\omega )\sin \omega \tau _2-G_5(\omega )\cos \omega \tau _2= & {} G_6(\omega ), \end{aligned}$$
(C.9)

where

$$\begin{aligned} G_1(\omega )= & {} \omega ^4-(\bar{\mathcal {M}_2}+\bar{\mathcal {P}_1})\omega ^2+(\bar{\mathcal {M}_4}+\bar{\mathcal {P}_3}), \nonumber \\ G_2(\omega )= & {} \bar{\mathcal {M}_1}\omega ^3-(\bar{\mathcal {M}_3}-\bar{\mathcal {P}_2})\omega , \nonumber \\ G_3(\omega )= & {} \bar{\mathcal {N}_2}\omega ^2-\bar{\mathcal {N}_4}, \nonumber \\ G_4(\omega )= & {} \omega ^4-(\bar{\mathcal {M}_2}-\bar{\mathcal {P}_1})\omega ^2+(\bar{\mathcal {M}_4}-\bar{\mathcal {P}_3}), \nonumber \\ G_5(\omega )= & {} \bar{\mathcal {M}_1}\omega ^3-(\bar{\mathcal {M}_3}+\bar{\mathcal {P}_2})\omega , \nonumber \\ G_6(\omega )= & {} \bar{\mathcal {N}_1}\omega ^3-\bar{\mathcal {N}_3}\omega . \end{aligned}$$

Solving (C.9) we get

$$\begin{aligned} \cos \omega \tau _2=\frac{G_{11}(\omega )}{G_{12}(\omega )},\quad \sin \omega \tau _2=\frac{G_{13}(\omega )}{G_{14}(\omega )}, \end{aligned}$$

where

$$\begin{aligned} G_{11}(\omega )= & {} \left( \bar{\mathcal {N}_4}-\bar{\mathcal {N}_2}\omega ^2 \right) \left( \bar{\mathcal {M}_4}-\bar{\mathcal {P}_3}-\bar{\mathcal {M}_2}\omega ^2+\bar{\mathcal {P}_1}\omega ^2+\omega ^4\right) -\left( \bar{\mathcal {N}_3}\omega -\bar{\mathcal {N}_1}\omega ^3\right) \left( \bar{\mathcal {M}_1}\omega ^3+\bar{\mathcal {P}_2}\omega -\bar{\mathcal {M}_3}\omega \right) ,\nonumber \\ G_{12}(\omega )= & {} \left( \bar{\mathcal {M}_3}\omega +\bar{\mathcal {P}_2}\omega -\bar{\mathcal {M}_1}\omega ^3\right) \left( \bar{\mathcal {P}_2}\omega -\bar{\mathcal {M}_3}\omega +\bar{\mathcal {M}_1}\omega ^3\right) \nonumber \\&-\left( \bar{\mathcal {M}_4}-\bar{\mathcal {P}_3}-\bar{\mathcal {M}_2}\omega ^2+\bar{\mathcal {P}_1}\omega ^2+\omega ^4\right) \left( \bar{\mathcal {M}_4}+\bar{\mathcal {P}_3}-\bar{\mathcal {M}_2}\omega ^2-\bar{\mathcal {P}_1}\omega ^2+\omega ^4\right) ,\nonumber \\ G_{13}(\omega )= & {} \bar{\mathcal {N}_1}\omega ^6+\omega ^4\left( \bar{\mathcal {M}_1}\bar{\mathcal {N}_2}-\bar{\mathcal {N}_3}-\bar{\mathcal {N}_1}\bar{\mathcal {P}_1}-\bar{\mathcal {M}_2}\bar{\mathcal {N}_1}\right) +\left( \bar{\mathcal {M}_3}\bar{\mathcal {N}_4}+\bar{\mathcal {N}_4}\bar{\mathcal {P}_2}-\bar{\mathcal {N}_3}\bar{\mathcal {P}_3}-\bar{\mathcal {M}_4}\bar{\mathcal {N}_3}\right) \nonumber \\&+\omega ^2\left( \bar{\mathcal {N}_1}\bar{\mathcal {P}_3}-\bar{\mathcal {N}_2}\bar{\mathcal {P}_2}+\bar{\mathcal {N}_3}\bar{\mathcal {P}_1}-\bar{\mathcal {M}_1}\bar{\mathcal {N}_4}+\bar{\mathcal {M}_2}\bar{\mathcal {N}_3}-\bar{\mathcal {M}_3}\bar{\mathcal {N}_2}+\bar{\mathcal {M}_1}\bar{\mathcal {N}_1}\right) ,\nonumber \\ G_{14}(\omega )= & {} \omega ^8+\omega ^6\left( \bar{\mathcal {M}_1}-2\bar{\mathcal {M}_2}\right) +\omega ^4\left( \bar{\mathcal {M}_2}^2-2\bar{\mathcal {M}_1}\bar{\mathcal {M}_3}+2\bar{\mathcal {M}_4}-\bar{\mathcal {P}_1}^2\right) \nonumber \\&+\omega ^2\left( 2\bar{\mathcal {P}_1}\bar{\mathcal {P}_3}-\bar{\mathcal {P}_2}^2-2\bar{\mathcal {M}_2}\bar{\mathcal {M}_4}+\bar{\mathcal {M}_3}^2\right) +\left( \bar{\mathcal {M}_4}^2-\bar{\mathcal {P}_3}^2\right) . \end{aligned}$$

From the relation

$$\begin{aligned} \sin ^2\omega \tau _2+\cos ^2\omega \tau _2=1, \end{aligned}$$

we have

$$\begin{aligned} G_{11}^2G_{14}^2+G_{12}^2G_{13}^2-G_{12}^2G_{14}^2=0. \end{aligned}$$
(C.10)

We consider \(H_{13}:\) Eq. (C.10) has a positive root \(\omega _0\).

If the condition \(H_{13}\) holds, then we obtain

$$\begin{aligned} \tau _{2_n}=\frac{1}{\omega _0}\times \arccos \left[ \frac{G_{11}(\omega _0)}{G_{12}(\omega _0)}\right] +\frac{2n\pi }{\omega _0}, \quad n=0, 1, 2,... \end{aligned}$$
(C.11)

Define the function \(\theta (\tau _2)\in [0, 2\pi )\) such that \(\cos \theta (\tau _2)\) is given by the right-hand side of (C.11). Then solving

$$\begin{aligned} \bar{S}_{1n}(\tau _2)=\tau _2-\tau _{2_n}, \end{aligned}$$

we get the \(\tau _2\), at which stability occurs. Differentiating (C.7) with respect to \(\tau _2\) and substituting \(\lambda =i\omega _0\) yields

$$\begin{aligned} Re\left[ \frac{\hbox {d}\lambda }{\hbox {d}\tau _2}\right] ^{-1}_{\lambda =i\omega _0}=\frac{G_{11}^{'}(\omega _0)}{G_{12}(\omega _0^2)}. \end{aligned}$$
(C.12)

Therefore, \(Re\left[ \frac{\hbox {d}\lambda }{\hbox {d}\tau _2}\right] ^{-1}_{\lambda =i\omega _0}\ne 0\) if the condition \(H_{14}\): \(G_{11}^{'}(\Omega _0)=\frac{\hbox {d}G_{11}(\omega )}{\hbox {d}\omega }|_{\omega =\Omega _0}\ne 0\) holds.

Thus, using Hopf bifurcation theorem [44], we obtain the result of Theorem 4.2 if the conditions \(H_{13}\): and \(H_{14}\): hold. \(\square \)

Proof of Theorem 4.3

For \(\tau _1\ne 0\) and \(\tau _2\ne 0\).

Let us assume \(\tau _1=\tau _2=\tau \). Then, the characteristic equation (9) becomes-

$$\begin{aligned}&\left( \lambda ^4+A_{11}\lambda ^3+A_{12}\lambda ^2+A_{13}\lambda +A_{14}\right) \nonumber \\&\quad +e^{-\lambda \tau }\left\{ (B_{11}+C_{11})\lambda ^3+(B_{12}+C_{12})\lambda ^2+(B_{13}+C_{13}) \lambda +(B_{14}+C_{14})\right\} \nonumber \\&\quad +e^{-2\lambda \tau }\left\{ (D_{11}+E_{11})\lambda ^2+(D_{12}+E_{12})\lambda +(D_{13}+E_{13})\right\} +e^{-3\lambda \tau }\left( F_{11}\lambda +F_{12}\right) =0. \end{aligned}$$
(C.13)

Multiplying \(e^{2\lambda \tau }\) on both sides of Eq. (C.13), we find

$$\begin{aligned} \lambda ^4+\mathbb {P}_{11}\lambda ^3+\mathbb {P}_{12}\lambda ^2+\mathbb {P}_{13}\lambda +\mathbb {P}_{14}+e^{\lambda \tau }\left( \mathbb {Q}_{11}\lambda ^3+\mathbb {Q}_{12}\lambda ^2+\mathbb {Q}_{13}\lambda +\mathbb {Q}_{14}\right) +e^{-\lambda \tau }\left( F_{11}\lambda +F_{12}\right) =0, \end{aligned}$$
(C.14)

where

$$\begin{aligned} \mathbb {P}_{11}= & {} A_{11}, \nonumber \\ \mathbb {P}_{12}= & {} A_{12}+D_{11}+E_{11},\nonumber \\ \mathbb {P}_{13}= & {} A_{13}+D_{12}+E_{12}, \nonumber \\ \mathbb {P}_{14}= & {} A_{14}+D_{13}+E_{13},\nonumber \\ \mathbb {Q}_{11}= & {} B_{11}+C_{11},\nonumber \\ \mathbb {Q}_{12}= & {} B_{12}+C_{12},\nonumber \\ \mathbb {Q}_{13}= & {} B_{13}+C_{13},\nonumber \\ \mathbb {Q}_{14}= & {} B_{14}+C_{14}. \end{aligned}$$

Let \(\lambda =i\omega (\omega >0)\) be a root of (C.14), then

$$\begin{aligned} \mathbb {M}_{11}(\omega )\cos \omega \tau -\mathbb {M}_{12}(\omega ) \sin \omega \tau= & {} \mathbb {M}_{13}(\omega ),\nonumber \\ \mathbb {M}_{14}(\omega )\sin \omega \tau +\mathbb {M}_{15}(\omega ) \cos \omega \tau= & {} \mathbb {M}_{16}(\omega ), \end{aligned}$$
(C.15)

where

$$\begin{aligned} \mathbb {M}_{11}= & {} -\mathbb {Q}_{12}\omega ^2+\mathbb {Q}_{14}+F_{12},\nonumber \\ \mathbb {M}_{12}= & {} -\mathbb {Q}_{11}\omega ^2+(\mathbb {Q}_{13}-F_{11})\omega ,\nonumber \\ \mathbb {M}_{13}= & {} \mathbb {P}_{12}\omega ^2-\omega ^4-\mathbb {P}_{14},\nonumber \\ \mathbb {M}_{14}= & {} -\mathbb {Q}_{12}\omega ^2+\mathbb {Q}_{14}-F_{12},\nonumber \\ \mathbb {M}_{15}= & {} -\mathbb {Q}_{11}\omega ^3+(\mathbb {Q}_{13}+F_{11})\omega ,\nonumber \\ \mathbb {M}_{16}= & {} \mathbb {Q}_{11}\omega ^3-\mathbb {P}_{13}\omega . \end{aligned}$$

Then we can obtain the expressions of \(\cos \omega \tau \) and \(\sin \omega \tau \) as follows:

$$\begin{aligned} \cos \omega \tau= & {} \frac{\mathbb {M}_{17}(\omega )}{\mathbb {M}_{19}(\omega )}, \nonumber \\ \sin \omega \tau= & {} \frac{\mathbb {M}_{18}(\omega )}{\mathbb {M}_{19}(\omega )}, \end{aligned}$$
(C.16)

where

$$\begin{aligned} \mathbb {M}_{17}(\omega )= & {} \mathbb {M}_{12}\mathbb {M}_{16}+\mathbb {M}_{13}\mathbb {M}_{14}, \nonumber \\ \mathbb {M}_{18}(\omega )= & {} \mathbb {M}_{11}\mathbb {M}_{16}-\mathbb {M}_{13}\mathbb {M}_{15}, \nonumber \\ \mathbb {M}_{19}(\omega )= & {} \mathbb {M}_{11}\mathbb {M}_{14}+\mathbb {M}_{12}\mathbb {M}_{15}. \end{aligned}$$

Thus, squaring and adding the equations of (C.16), we obtain the following equation with respect to ‘\(\omega \)

$$\begin{aligned} \mathbb {M}_{17}^2(\omega )+\mathbb {M}_{18}^2(\omega )-\mathbb {M}_{19}^2(\omega )=0. \end{aligned}$$
(C.17)

Consider \(\mathbf {H_{15}:}\) Eq. (C.17) has a positive root \(\omega _0\). Then, we obtain

$$\begin{aligned} \tau _n^*=\frac{1}{\omega _0}\arccos \left[ \frac{\mathbb {M}_{17}(\omega _0)}{\mathbb {M}_{19}(\omega _0)}\right] +\frac{2n\pi }{\omega _0}; \quad n=0, 1, 2, ... \end{aligned}$$
(C.18)

Hence, for finite number of positive \(\omega _0\) we get finite number of \(\tau _0^i\), \(i=1, 2, 3, ...\) Let

$$\begin{aligned} \tau _0^*=\min \left\{ \tau _0^i, i=1, 2, 3, ... \right\} \end{aligned}$$

Define the function \(\theta (\tau )\in [0, 2\pi )\) such that \(\cos \theta (\tau )\) is given by the right-hand side of (C.18). Then, solving

$$\begin{aligned} \bar{S}_{2n}(\tau )=\tau -\tau _n^*, \end{aligned}$$

we get the critical value of ‘\(\tau \)’, at which stability switches occurs. Differentiating (C.13) with respect to \(\tau \) and substituting \(\lambda =i\omega _0\), one obtains

$$\begin{aligned} Re\left[ \frac{\hbox {d}\lambda }{\hbox {d}\tau }\right] ^{-1}_{\lambda =i\omega _0}=\frac{\mathbb {M}_{17}^{'}(\omega _0)}{\mathbb {M}_{19}(\omega _0^2)}. \end{aligned}$$
(C.19)

Therefore, \(Re\left[ \frac{\hbox {d}\lambda }{\hbox {d}\tau }\right] ^{-1}_{\lambda =i\omega _0}\ne 0\) if the condition

\(\mathbf {H_{16}:}\) \(\mathbb {M}_{17}^{'}(\omega _0)=\frac{\hbox {d}\mathbb (M)_{17}(\omega )}{\hbox {d}\omega }|_{\omega =\omega _0}\ne 0\) holds.

Thus, using Hopf bifurcation theorem [44], we obtain the result of Theorem 4.3 if the conditions \(H_{15}\): and \(H_{16}\): hold. \(\square \)

Proof of Theorem 4.4

For \(\tau _2>0\) and \(\tau _1\in (0, \tau _{1_0})\), here we consider \(\tau _2\) as bifurcation parameter and \(\tau _1\) is in its stable interval. Let \(\lambda =i\omega \) be a root of the characteristic equation (9). Then, we have

$$\begin{aligned} \mathbb {N}_{11}(\omega , \tau _1)\cos \omega \tau _2+\mathbb {N}_{12}(\omega , \tau _1)\sin \omega \tau _2= & {} \mathbb {N}_{13}(\omega , \tau _1),\nonumber \\ \mathbb {N}_{12}(\omega , \tau _1)\cos \omega \tau _2-\mathbb {N}_{11}(\omega , \tau _1)\sin \omega \tau _2= & {} \mathbb {N}_{14}(\omega , \tau _1), \end{aligned}$$
(C.20)

where

$$\begin{aligned} \mathbb {N}_{11}(\omega , \tau _1)= & {} B_{14}-B_{12}\omega ^2-E_{11}\omega ^2\cos \omega \tau _1+E_{13}\cos \omega \tau _1+E_{12}\omega \sin \omega \tau _1+F_{12}\cos 2\omega \tau _1\nonumber \\&+F_{11}\omega \sin 2\omega \tau _1,\nonumber \\ \mathbb {N}_{12}(\omega , \tau _1)= & {} B_{13}\omega -B_{11}\omega ^3+E_{12}\omega \cos \omega \tau _1+E_{11}\omega ^2\sin \omega \tau _1-E_{13}\sin \omega \tau _1+F_{11}\omega \cos 2\omega \tau _1\nonumber \\&-F_{12}\sin 2\omega \tau _1,\nonumber \\ \mathbb {N}_{13}(\omega , \tau _1)= & {} C_{12}\omega ^2\cos \omega \tau _1-C_{14}\cos \omega \tau _1+C_{11}\omega ^3\sin \omega \tau _1+D_{11}\omega ^2\cos 2\omega \tau _1-D_{13}\cos 2\omega \tau _1\nonumber \\&-D_{12}\omega \sin 2\omega \tau _1-\omega ^4+A_{12}\omega ^2-A_{14},\nonumber \\ \mathbb {N}_{14}(\omega , \tau _1)= & {} C_{11}\omega ^3\cos \omega \tau _1-C_{13}\omega \cos \omega \tau _1-C_{12}\omega ^2\sin \omega \tau _1+C_{13}\omega \sin \omega \tau _1+C_{14}\sin \omega \tau _1\nonumber \\&-D_{12}\omega \cos 2\omega \tau _1-D_{11}\omega ^2\sin 2\omega \tau _1+D_{13}\sin 2\omega \tau _1+A_{11}\omega ^3-A_{13}\omega . \end{aligned}$$

Solving the equations of (C.20), we obtain the following expression of \(\cos \omega \tau _2\) and \(\sin \omega \tau _2\) as follows

$$\begin{aligned} \cos \omega \tau _2= & {} \frac{\mathbb {N}_{15}(\omega , \tau _1)}{\mathbb {N}_{17}(\omega , \tau _1)} ,\nonumber \\ \sin \omega \tau _2= & {} \frac{\mathbb {N}_{16}(\omega , \tau _1)}{\mathbb {N}_{17}(\omega , \tau _1)}, \end{aligned}$$
(C.21)

where

$$\begin{aligned} \mathbb {N}_{15}(\omega , \tau _1)= & {} \mathbb {N}_{13}(\omega , \tau _1)\mathbb {N}_{11}(\omega , \tau _1)+\mathbb {N}_{14}(\omega , \tau _1)\mathbb {N}_{12}(\omega , \tau _1),\nonumber \\ \mathbb {N}_{16}(\omega , \tau _1)= & {} \mathbb {N}_{12}(\omega , \tau _1)\mathbb {N}_{13}(\omega , \tau _1)-\mathbb {N}_{11}(\omega , \tau _1)\mathbb {N}_{14}(\omega , \tau _1),\nonumber \\ \mathbb {N}_{17}(\omega , \tau _1)= & {} \mathbb {N}_{11}^2(\omega , \tau _1)+\mathbb {N}_{12}^2(\omega , \tau _1). \end{aligned}$$

Thus, squaring and adding the equations of (C.21), we obtain the following equation with respect to ‘\(\omega \)’ and \(\tau _1\)

$$\begin{aligned} \mathbb {N}_{15}^2(\omega , \tau _1)+\mathbb {N}_{16}^2(\omega , \tau _1)-\mathbb {N}_{17}^2(\omega , \tau _1)=0. \end{aligned}$$
(C.22)

Consider \(\mathbf {H_{17}:}\) Eq. (C.22) has a positive root \(\omega _0\). Then, we obtain

$$\begin{aligned} \tau _{2_n}^*=\frac{1}{\omega _0}\arccos \left[ \frac{\mathbb {N}_{15}(\omega , \tau _1)}{\mathbb {N}_{17}(\omega , \tau _1)}\right] +\frac{2n\pi }{\omega _0}; \quad n=0, 1, 2, ... \end{aligned}$$
(C.23)

Hence, for finite number of positive \(\omega _0\) and \(n=0\) we get finite number of \(\tau _{2_0}^i\), \(i=1, 2, 3, ...\)

Let

$$\begin{aligned} \tau _{2_0}^*=\min \left\{ \tau _{2_0}^i, i=1, 2, 3, ... \right\} \end{aligned}$$

Define the function \(\theta (\tau _2)\in [0, 2\pi )\) such that \(\cos \theta (\tau _2)\) is given by the right-hand side of (C.23). Then, solving

$$\begin{aligned} \bar{S}_{3n}(\tau _2)=\tau _2-\tau _{2_n}^*, \end{aligned}$$

we get the critical value of ‘\(\tau _2\)’, at which stability switches occurs. Differentiating (9) with respect to \(\tau _2\) and substituting \(\lambda =i\omega _0\), one gets

$$\begin{aligned} Re\left[ \frac{\hbox {d}\lambda }{\hbox {d}\tau _2}\right] ^{-1}_{\lambda =i\omega _0}=\frac{\mathbb {N}_{15}^{'}(\omega , \tau _1)}{\mathbb {N}_{17}(\omega , \tau _1)}. \end{aligned}$$
(C.24)

Therefore, \(Re\left[ \frac{\hbox {d}\lambda }{\hbox {d}\tau _2}\right] ^{-1}_{\lambda =i\omega _0}\ne 0\) if the condition

\(\mathbf {H_{18}:}\) \(\mathbb {N}_{15}^{'}(\omega , \tau _1)=\frac{\hbox {d}\mathbb (N)_{15}(\omega , \tau _1)}{\hbox {d}\omega }|_{\omega =\omega _0}\ne 0\) holds. Thus, using Hopf bifurcation theorem [44], we get the result of Theorem 4.4 if the conditions \(H_{17}\): and \(H_{18}\): hold. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, S., Alsakaji, H.J., Rihan, F.A. et al. Investigating the dynamics of a delayed stage-structured epidemic model with saturated incidence and treatment functions. Eur. Phys. J. Plus 137, 171 (2022). https://doi.org/10.1140/epjp/s13360-022-02351-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02351-0

Navigation