Skip to main content
Log in

A new efficient buckling investigation of functionally graded CNT/fiber/polymer/metal composite panels exposed to hydrostatic pressure considering simultaneous manufacturing-induced agglomeration and imperfection issues

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The ultimate buckling capacity of the composite cylinders exposed to external hydrostatic pressure is identified as a critical factor in design, manufacturing and in-service life stages of these structures. This study deals with study and analysis of a new class of polymeric composite panels, consisting of metallic and fibrous layers and reinforced with functionally graded carbon nanotubes (FG-CNTs). Manufacturing-induced geometrical imperfection and CNT-agglomeration issues are among the commonly-reported problems associated with FG-CNT-reinforced composite panels under external pressure. On this account, this study will thoroughly scrutinize the influence of various parameters such as the fiber orientation, metal type and volume fraction, CNT volume fraction and distribution pattern, while both agglomeration and imperfection flaws are taken into account. The Galerkin method together with micromechanics models is employed in the solution procedure, and after verifying the proposed approach, the results are discussed in detail. Finally, key conclusions are presented to achieve the highest practical buckling capacity in the presence of agglomeration and imperfection problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. A. Tabatabaeian, A.R. Ghasemi, B. Asghari, Specification of non-uniform residual stresses and tensile characteristic in laminated composite materials exposed to simulated space environment. Polym Test 80, 106147 (2019). https://doi.org/10.1016/j.polymertesting.2019.106147

    Article  Google Scholar 

  2. A. Tabatabaeian, M. Baraheni, S. Amini, A.R. Ghasemi, Environmental, mechanical and materialistic effects on delamination damage of glass fiber composites: analysis and optimization. J Compos Mater (2019). https://doi.org/10.1177/0021998319844811

    Article  Google Scholar 

  3. A. Tabatabaeian, A. Ghasemi, Curvature changes and weight loss of polymeric nano-composite plates with consideration of the thermal cycle fatigue effects and different resin types: an experimental approach. Mech Mater 131, 69–77 (2019). https://doi.org/10.1016/j.mechmat.2019.01.017

    Article  Google Scholar 

  4. Z. Asaee, F. Taheri, Enhancement of performance of three-dimensional fiber metal laminates under low velocity impact: a coupled numerical and experimental investigation. J Sandw Struct Mater (2017). https://doi.org/10.1177/1099636217740389

    Article  Google Scholar 

  5. D. De Cicco, F. Taheri, Robust numerical approaches for simulating the buckling response of 3D fiber-metal laminates under axial impact: validation with experimental results. J Sandw Struct Mater (2018). https://doi.org/10.1177/1099636218789614

    Article  Google Scholar 

  6. B. Soltannia, P. Mertiny, F. Taheri, Static and dynamic characteristics of nano-reinforced 3D-fiber metal laminates using non-destructive techniques. J Sandw Struct Mater (2020). https://doi.org/10.1177/1099636220924585

    Article  Google Scholar 

  7. E. Grande, M. Imbimbo, V. Tomei, Role of global buckling in the optimization process of grid shells: design strategies. Eng Struct 156, 260–270 (2018). https://doi.org/10.1016/j.engstruct.2017.11.049

    Article  Google Scholar 

  8. M. Nasihatgozar, S.M.R. Khalili, Vibration and buckling analysis of laminated sandwich conical shells using higher order shear deformation theory and differential quadrature method. J Sandw Struct Mater (2017). https://doi.org/10.1177/1099636217715806

    Article  Google Scholar 

  9. M. Safarabadi, M. Haghighi-Yazdi, M. Sorkhi, A. Yousefi, Experimental and numerical study of buckling behavior of foam-filled honeycomb core sandwich panels considering viscoelastic effects. J Sandw Struct Mater (2020). https://doi.org/10.1177/1099636220975168

    Article  Google Scholar 

  10. X.Y. Ni, B.G. Prusty, A.K. Hellier, Buckling and post-buckling of isotropic and composite stiffened panels: a review on analysis and experiment (2000–2012). Trans R Inst Nav Archit Part A Int J Marit Eng 157, A9-30 (2015). https://doi.org/10.3940/rina.ijme.2015.al.300

    Article  Google Scholar 

  11. M.H. Hajmohammad, A. Tabatabaeian, A.R. Ghasemi, F. Taheri-Behrooz, A novel detailed analytical approach for determining the optimal design of FRP pressure vessels subjected to hydrostatic loading : analytical model with experimental validation. Compos Part B 183, 107732 (2020). https://doi.org/10.1016/j.compositesb.2019.107732

    Article  Google Scholar 

  12. E. García-Macías, L. Rodríguez-Tembleque, R. Castro-Triguero, A. Sáez, Eshelby-Mori-Tanaka approach for post-buckling analysis of axially compressed functionally graded CNT/polymer composite cylindrical panels. Compos Part B Eng 128, 208–224 (2017). https://doi.org/10.1016/j.compositesb.2017.07.016

    Article  Google Scholar 

  13. M. Nasihatgozar, V. Daghigh, M. Eskandari, K. Nikbin, A. Simoneau, Buckling analysis of piezoelectric cylindrical composite panels reinforced with carbon nanotubes. Int J Mech Sci 107, 69–79 (2016). https://doi.org/10.1016/j.ijmecsci.2016.01.010

    Article  Google Scholar 

  14. A. Hajlaoui, E. Chebbi, F. Dammak, Buckling analysis of carbon nanotube reinforced FG shells using an efficient solid-shell element based on a modified FSDT. Thin-Walled Struct 144, 106254 (2019). https://doi.org/10.1016/j.tws.2019.106254

    Article  Google Scholar 

  15. D.G. Ninh, Nonlinear thermal torsional post-buckling of carbon nanotube-reinforced composite cylindrical shell with piezoelectric actuator layers surrounded by elastic medium. Thin-Walled Struct 123, 528–538 (2018). https://doi.org/10.1016/j.tws.2017.11.027

    Article  Google Scholar 

  16. S. Chakraborty, T. Dey, R. Kumar, Stability and vibration analysis of CNT-Reinforced functionally graded laminated composite cylindrical shell panels using semi-analytical approach. Compos Part B Eng 168, 1–14 (2019). https://doi.org/10.1016/j.compositesb.2018.12.051

    Article  Google Scholar 

  17. N.D. Khoa, H.T. Thiem, N.D. Duc, Nonlinear buckling and postbuckling of imperfect piezoelectric S-FGM circular cylindrical shells with metal-ceramic-metal layers in thermal environment using Reddy’s third-order shear deformation shell theory. Mech Adv Mater Struct 26, 248–259 (2017). https://doi.org/10.1080/15376494.2017.1341583

    Article  Google Scholar 

  18. P.T. Hieu, H.V. Tung, Postbuckling behavior of CNT-reinforced composite cylindrical shell surrounded by an elastic medium and subjected to combined mechanical loads in thermal environments. J. Thermoplast. Compos. Mater. 32, 1–28 (2018). https://doi.org/10.1177/0892705718796551

    Article  Google Scholar 

  19. S. Zghal, S. Trabelsi, F. Dammak, Post-buckling behavior of functionally graded and carbon-nanotubes based structures with different mechanical loadings. Mech. Based Des. Struct. Mach. (2020). https://doi.org/10.1080/15397734.2020.1790387

    Article  Google Scholar 

  20. S. Trabelsi, S. Zghal, F. Dammak, Thermo-elastic buckling and post-buckling analysis of functionally graded thin plate and shell structures. J. Braz. Soc. Mech. Sci. Eng. (2020). https://doi.org/10.1007/s40430-020-02314-5

    Article  Google Scholar 

  21. M.A. Maghsoudlou, R. Barbaz Isfahani, S. Saber-Samandari, M. Sadighi, Effect of interphase, curvature and agglomeration of SWCNTs on mechanical properties of polymer-based nanocomposites: Experimental and numerical investigations. Compos Part B Eng 175, 107119 (2019). https://doi.org/10.1016/j.compositesb.2019.107119

    Article  Google Scholar 

  22. Z. Asaee, M. Mohamed, S. Soumik, F. Taheri, Experimental and numerical characterization of delamination buckling behavior of a new class of GNP-reinforced 3D fiber-metal laminates. Thin-Walled Struct 112, 208–216 (2017). https://doi.org/10.1016/j.tws.2016.12.015

    Article  Google Scholar 

  23. A.R. Ghasemi, M. Soleymani, Effects of carbon nanotubes distribution on the buckling of carbon nanotubes / fiber / polymer / metal hybrid laminates cylindrical shell. J Sandw Struct Mater (2020). https://doi.org/10.1177/1099636220909786

    Article  Google Scholar 

  24. K. Hosseinpour, A.R. Ghasemi, Agglomeration and aspect ratio effects on the long-term creep of carbon nanotubes / fiber / polymer composite cylindrical shells. J Sandw Struct Mater (2019). https://doi.org/10.1177/1099636219857200

    Article  Google Scholar 

  25. H.N.R. Wagner, E. Petersen, R. Khakimova, C. Hühne, Buckling analysis of an imperfection-insensitive hybrid composite cylinder under axial compression – numerical simulation, destructive and non- destructive experimental testing. Compos Struct 225, 111152 (2019). https://doi.org/10.1016/j.compstruct.2019.111152

    Article  Google Scholar 

  26. Z. Sadovský, J. Kriváček, Influential geometric imperfections in buckling of axially compressed cylindrical shells: a novel approach. Eng Struct 223, 111170 (2020). https://doi.org/10.1016/j.engstruct.2020.111170

    Article  Google Scholar 

  27. H. Wu, S. Kitipornchai, J. Yang, Imperfection sensitivity of thermal post-buckling behaviour of functionally graded carbon nanotube-reinforced composite beams. Appl Math Model 42, 735–752 (2017). https://doi.org/10.1016/j.apm.2016.10.045

    Article  MathSciNet  MATH  Google Scholar 

  28. V.V. Vasiliev, Mechanics of Composite Structures.pdf (Taylor & Francis, Washington DC, 1993)

    Google Scholar 

  29. M. Nejati, R. Dimitri, F. Tornabene, Y.M. Hossein, Thermal buckling of nanocomposite stiffened cylindrical shells reinforced by functionally graded wavy carbon nanotubes with temperature-dependent properties. Appl Sci 7, 1223 (2017). https://doi.org/10.3390/app7121223

    Article  Google Scholar 

  30. T. Messager, Buckling of imperfect laminated cylinders under hydrostatic pressure. Compos Struct 53, 301–307 (2001)

    Article  Google Scholar 

  31. A. Tabatabaeian, M. Lotfi, A. Reza, S. Roohollahi, Development of a new analytical framework for deflection analysis of un-symmetric hybrid FRP laminates with arbitrary ply arrangement and MWCNT reinforcement. Eng Struct 228, 111490 (2020). https://doi.org/10.1016/j.engstruct.2020.111490

    Article  Google Scholar 

  32. A.R. Ghasemi, A. Tabatabaeian, M. Moradi, Residual stress and failure analyses of polymer matrix composites considering thermal cycling and temperature effects based on classical laminate plate theory. J Compos Mater (2019). https://doi.org/10.1177/0021998318812127

    Article  Google Scholar 

  33. G. Sun, J.S. Hansen, Optimal design of laminated- composite circular-cylindrical shells subjected to combined loads. J Appl Mech 55 (1988)

  34. M. Song, S. Kitipornchai, J. Yang, Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos Struct 159, 579–588 (2017). https://doi.org/10.1016/j.compstruct.2016.09.070

    Article  Google Scholar 

  35. K. Baek, W. Lee, H. Shin, M. Cho, Multiscale study on determining representative volume elements size for mechanical behaviours of complex polymer nanocomposites with nanoparticulate agglomerations. Compos Struct 253, 112796 (2020). https://doi.org/10.1016/j.compstruct.2020.112796

    Article  Google Scholar 

  36. J.A. Krishnaswamy, F.C. Buroni, F. Garcia-sanchez, R. Melnik, L. Rodriguez-tembleque, A. Saez, Lead-free piezocomposites with CNT-modified matrices : Accounting for agglomerations and molecular defects. Compos Struct 224, 111033 (2019). https://doi.org/10.1016/j.compstruct.2019.111033

    Article  Google Scholar 

  37. A.R. Ghasemi, M. Mohandes, R. Dimitri, F. Tornabene, Agglomeration effects on the vibrations of CNTs / fiber / polymer / metal hybrid laminates cylindrical shell. Compos Part B 167, 700–716 (2019). https://doi.org/10.1016/j.compositesb.2019.03.028

    Article  Google Scholar 

  38. S. Kamarian, M. Salim, R. Dimitri, F. Tornabene, Free vibration analysis of conical shells reinforced with agglomerated carbon nanotubes. Int J Mech Sci (2016). https://doi.org/10.1016/j.ijmecsci.2016.02.006

    Article  Google Scholar 

  39. H. Hedayati, A.B. Sobhani, Influence of graded agglomerated CNTs on vibration of CNT-reinforced annular sectorial plates resting on Pasternak foundation. Appl Math Comput 218, 8715–8735 (2012). https://doi.org/10.1016/j.amc.2012.01.080

    Article  MathSciNet  MATH  Google Scholar 

  40. A.R. Ghasemi, M.M. Mohammadi, M. Mohandes, The role of carbon nanofibers on thermo-mechanical properties of polymer matrix composites and their effect on reduction of residual stresses. Compos Part B 77, 519–527 (2015). https://doi.org/10.1016/j.compositesb.2015.03.065

    Article  Google Scholar 

  41. A. Tabatabaeian, A.R. Ghasemi, The impact of MWCNT modification on the structural performance of polymeric composite profiles. Polym Bull (2020). https://doi.org/10.1007/s00289-019-03088-0

    Article  Google Scholar 

  42. A.R. Ghasemi, A. Tabatabaeian, B. Asghari, Application of slitting method to characterize the effects of thermal fatigue, lay-up arrangement and MWCNTs on the residual stresses of laminated composites. Mech Mater 134, 185–192 (2019). https://doi.org/10.1016/j.mechmat.2019.04.008

    Article  Google Scholar 

  43. I. Inagaki, T. Tsutomu, S. Yoshihisa, A. Nozomu, Application and Features of Titanium for the Aerospace Industry. Nippon Steel Sumitomo Met Tech Rep 22–7 (2014)

  44. B.L. Mordike, T. Ebert, Magnesium properties - applications - potential. Mater Sci Eng A 302, 37–45 (2001). https://doi.org/10.1016/S0921-5093(00)01351-4

    Article  Google Scholar 

  45. A. Vlot, E. Kroon, G. La Rocca, Impact response of fiber metal laminates. Key Eng Mater 141–143, 235–276 (1998). https://doi.org/10.4028/www.scientific.net/KEM.141-143.235

    Article  Google Scholar 

  46. A.R. Ghasemi, S. Kiani, A. Tabatabaeian, Buckling analysis of FML cylindrical shells under combined axial and torsional loading. Mech Adv Compos Struct 7 (2020)

  47. B. Asghari, A.R. Ghasemi, A. Tabatabaeian, On the optimal design of manufacturing-induced residual stresses in filament wound carbon fiber composite cylindrical shells reinforced with carbon nanotubes. Compos Sci Technol 182, 107743 (2019). https://doi.org/10.1016/j.compscitech.2019.107743

    Article  Google Scholar 

  48. A.R. Ghasemi, B. Asghari, A. Tabatabaeian, Determination of the influence of thermo-mechanical factors on the residual stresses of cylindrical composite tubes : Experimental and computational analyses. Int J Press Vessel Pip 183, 104098 (2020). https://doi.org/10.1016/j.ijpvp.2020.104098

    Article  Google Scholar 

  49. A.V. Lopatin, E.V. Morozov, Buckling of composite cylindrical shells with rigid end disks under hydrostatic pressure. Compos Struct 173, 136–143 (2017). https://doi.org/10.1016/j.compstruct.2017.03.109

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Reza Ghasemi.

Appendix

Appendix

$$ a_{11} = A_{11} \left( {1 - \frac{{\tilde{a}}}{h}} \right) + A_{33} n^{2} \left( {1 + \frac{{\tilde{a}}}{h}} \right) $$
$$ a_{12} = a_{21} = - \left[ {A_{12} (1 - \frac{{\tilde{a}}}{h}) + A_{33} (1 + \frac{{\tilde{a}}}{h}) - \frac{{\tilde{a}}}{2R}(A_{12}^{\prime } - 2A_{33}^{\prime } )} \right]n $$
$$ a_{13} = a_{31} = \frac{{A_{12} }}{R}(\frac{{\tilde{a}}}{h} - 1) + \frac{{\tilde{a}}}{2}\left[ {A^{\prime}_{11} + (A^{\prime}_{12} - 2A^{\prime}_{33} )n^{2} } \right] $$
$$ a_{22} = A_{22} \left( {1 - \frac{{\tilde{a}}}{h}} \right)n^{2} + A_{33} \left( {1 + \frac{{\tilde{a}}}{h}} \right) + \frac{1}{{R^{2} }}(D_{22} n^{2} + 2D_{33} ) - \frac{{\tilde{a}}}{2R}(2A_{22}^{\prime } n^{2} - 3A_{33}^{\prime } ) + \frac{{A_{22} n^{2} }}{{2R^{2} }}\left( {\tilde{a}^{2} - \frac{{3\tilde{a}^{3} }}{2h}} \right) + \frac{{A_{66} }}{{R^{2} }}\left( {\tilde{a}^{2} + \frac{{3\tilde{a}^{3} }}{2h}} \right) $$
$$ a_{23} = a_{32} = \frac{{A_{22} n}}{R}\left( {1 - \frac{{\tilde{a}}}{h}} \right) + \frac{{D_{22} n^{3} + (D_{12} + 2D_{66} )n}}{R} - \frac{{\tilde{a}}}{2}\left[ {A_{22}^{\prime } \left( {n^{3} + \frac{n}{{R^{2} }}} \right) + (A_{12}^{\prime } + 2A_{66}^{\prime } )n} \right] + \frac{{A_{22} n^{3} + A_{12} n}}{2R}\left( {a^{2} - \frac{{a^{3} }}{2h}} \right) + \frac{{A_{66} n}}{2R}\left( {\tilde{a}^{2} + \frac{{\tilde{a}^{3} }}{2h}} \right) $$
$$ a_{33} = \frac{{A_{22} }}{R}\left( {1 - \frac{{\tilde{a}}}{h}} \right) + D_{11} + D_{22} n^{4} + 2(D_{12} + 2D_{66} )n^{2} - \frac{{\tilde{a}}}{2}\left[ {\frac{2}{R}(A_{12}^{\prime } + A_{22}^{\prime } n^{2} )} \right] + \frac{{A_{11} + A_{22} n^{4} + 2A_{12} n^{2} }}{2}\left( {\tilde{a}^{2} - \frac{{\tilde{a}^{3} }}{2h}} \right) + \frac{{A_{33} n^{2} }}{2}\left( {\tilde{a}^{2} + \frac{{\tilde{a}^{3} }}{2h}} \right) $$
$$ b_{11} = b_{12} = b_{13} = b_{21} = b_{31} = 0 $$
$$ b_{22} = \frac{1}{R} $$
$$ b_{23} = b_{32} = n $$
$$ b_{33} = \left( {n^{2} + \frac{1}{2}} \right)R $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, A.R., Soleymani, M. A new efficient buckling investigation of functionally graded CNT/fiber/polymer/metal composite panels exposed to hydrostatic pressure considering simultaneous manufacturing-induced agglomeration and imperfection issues. Eur. Phys. J. Plus 136, 1220 (2021). https://doi.org/10.1140/epjp/s13360-021-02197-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02197-y

Navigation