Skip to main content
Log in

Including millisecond pulsars inside the core of globular clusters in pulsar timing arrays

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We suggest the possibility of including millisecond pulsars inside the core of globular clusters in pulsar timing array experiments. Since they are very close to each other, their gravitational wave-induced timing residuals are expected to be almost the same, because both the Earth and the pulsar terms are correlated. We simulate the expected timing residuals, due to the gravitational wave signal emitted by a uniform supermassive black-hole binary population, on the millisecond pulsars inside a globular cluster core. In this respect, Terzan 5 has been adopted as a globular cluster prototype and, in our simulations, we adopted similar distance, core radius, and number of millisecond pulsars contained in it. Our results show that the presence of a strong correlation between the timing residuals of the globular cluster core millisecond pulsars can provide a remarkable gravitational wave signature. This result can be therefore exploited for the detection of gravitational waves through pulsar timing, especially in conjunction with the standard cross-correlation search carried out by the pulsar timing array collaborations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

Only simulated data have been used in the paper.

Notes

  1. In some rare cases an MSP can also have a planetary companion (or even more than one) which may be responsible for low-frequency timing residuals. The first exoplanet was indeed discovered just thanks to that effect [16].

  2. GC MSPs might also be important for the gravitational bursts with memory (BWMs) detection. Indeed, since GCs are often characterized by a high stellar density, this makes them suitable for the occurrence of BWM. Such events would induce impact parameter-dependent timing residuals on all GC MSPs (see ref. [19] for a more detailed discussion)

  3. Note that the MSP radio emission is actually observed from the Earth, which is not an inertial reference frame. Therefore, the ToA data are transformed to the SSB reference frame.

  4. For an exhaustive derivation see ref. [22].

  5. In this paper, geometrical units c=G=1 have been adopted.

  6. In this paper, the Einstein notation, which indicates the sum over repeated indices, has been adopted.

  7. Interestingly enough, \(B1821-24A\) is also characterized by a large value of the second-order spin-frequency derivative (i.e., \({\ddot{\nu }}=29.42\pm 15.75\times 10^{-27}\,\mathrm{s}^{-3}\)) but seems to be affected only slightly, probably at a level not much larger than \(15\%\), by the GC gravitational potential [37].

  8. In accordance with what is described by the GC core mass-density distribution [40].

  9. The distribution parameters have been arbitrarily chosen with the aim to simulate the GW emission from a possible SMBHB population observable by PTAs. The results in refs. [41,42,43] have been used as reference.

  10. Note that the Pearson correlation matrix coefficients are in the interval [− 1,1], where 1 means perfect correlation, 0 means non-correlation and − 1 means perfect anti-correlation.

  11. The mean value has been calculated by ignoring the diagonal elements of the matrix.

References

  1. A. Einstein, Die grundlage der allgemeinen relativitätstheorie. Ann. Phys. 354, 769–822 (1916). https://doi.org/10.1002/andp.19163540702

    Article  MATH  Google Scholar 

  2. B.P. Abbott et al., Observation of gravitational waves from a binary black hole merger. PRL 116, 061102 (2016). https://doi.org/10.1103/PhysRevLett.116.061102

    Article  ADS  MathSciNet  Google Scholar 

  3. B.P. Abbott et al., Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB170817A. ApJ 848, L13 (2017). https://doi.org/10.3847/2041-8213/aa920c

    Article  ADS  Google Scholar 

  4. P. Amaro-Seoane et al. Laser Interferometer Space Antenna. eprint arXiv:1702.00786, (2017)

  5. Lisa. https://sci.esa.int/web/lisa

  6. M. Rajagopal, R.W. Romani, Ultra-low-frequency gravitational radiation from massive black hole binaries. ApJ 446, 543 (1995). https://doi.org/10.1086/175813

    Article  ADS  Google Scholar 

  7. T. Damour, A. Vilenkin, Gravitational wave bursts from cusps and kinks on cosmic strings. PRD 64, 064008 (2001). https://doi.org/10.1103/PhysRevD.64.064008

    Article  ADS  MathSciNet  Google Scholar 

  8. M.V. Sazhin, Opportunities for detecting ultralong gravitational waves. Astronomicheskii Zhurnal 55, 65–68 (1978)

    ADS  MathSciNet  Google Scholar 

  9. S. Detweiler, Pulsar timing measurements and the search for gravitational waves. ApJ 234, 1100–1104 (1979). https://doi.org/10.1086/157593

    Article  ADS  Google Scholar 

  10. Z. Arzoumanian et al., The NANOgrav 12.5 yr data set: search for an isotropic stochastic gravitational-wave background. ApJ 905, L34 (2020). https://doi.org/10.3847/2041-8213/abd401

    Article  ADS  Google Scholar 

  11. B. Goncharov et al. On the evidence for a common-spectrum process in the search for the nanohertz gravitational-wave background with the Parkes Pulsar Timing Array. eprint arXiv:2107.12112, (2021)

  12. S. Blasi, V. Brdar, K. Schmitz, Has NANOGrav found first evidence for cosmic strings? PhRvL 126, 041305 (2021). https://doi.org/10.1103/PhysRevLett.126.041305

    Article  ADS  MathSciNet  Google Scholar 

  13. W. Ratzinger, P. Schwaller, Whispers from the dark side: confronting light new physics with NANOGrav data. ScPP 10, 047 (2021)

    ADS  Google Scholar 

  14. Q. Liang, M. Trodden. Detecting the stochastic gravitational wave background from massive gravity with Pulsar Timing Arrays. eprint arXiv:2108.05344, (2021)

  15. R.W. Hellings, G.S. Downs, Upper limits on the isotropic gravitational radiation background from pulsar timing analysis. ApJ 265, L39–L42 (1983). https://doi.org/10.1086/183954

    Article  ADS  Google Scholar 

  16. A. Wolszczan, D.A. Frail, A planetary system around the millisecond pulsar PSR1257 + 12. Nature 355, 145–147 (1992). https://doi.org/10.1038/355145a0

    Article  ADS  Google Scholar 

  17. E.S. Phinney, Pulsars as probes of Newtonian dynamical systems. RSPTA 341, 39–75 (1992). https://doi.org/10.1098/rsta.1992.0084

    Article  ADS  Google Scholar 

  18. E.S. Phinney, Pulsars as probes of globular cluster dynamics. ASPCS 50, 141 (1993)

    ADS  Google Scholar 

  19. D.R. Madison, D.F. Chernoff, J.M. Cordes, Pulsar timing perturbations from galactic gravitational wave bursts with memory. PRD 96, 123016 (2017). https://doi.org/10.1103/PhysRevD.96.123016

    Article  ADS  Google Scholar 

  20. P.C.C. Freire, Long-term observations of the pulsars in 47 Tucanae - II. Proper motions, accelerations and jerks. MNRAS 471, 857–876 (2017). https://doi.org/10.1093/mnras/stx1533

    Article  ADS  Google Scholar 

  21. B.J. Prager et al., Using long-term millisecond pulsar timing to obtain physical characteristics of the bulge globular cluster Terzan 5. ApJ 845, 148 (2017). https://doi.org/10.3847/1538-4357/aa7ed7

    Article  ADS  Google Scholar 

  22. M. Maggiore, Gravitational Waves. Astrophysics and Cosmology (Oxford University Press, Oxford, 2008)

    Google Scholar 

  23. S.L. Shapiro, S.A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects (Wiley, A Wiley-Interscience Publication, New York, 1983)

    Book  Google Scholar 

  24. G. Desvignes et al., High-precision timing of 42 millisecond pulsars with the European pulsar timing array. MNRAS 458, 3341–3380 (2016). https://doi.org/10.1093/mnras/stw483

    Article  ADS  Google Scholar 

  25. B.C. Joshi et al., Precision pulsar timing with the ORT and the GMRT and its applications in pulsar astrophysics. JApA 39, 51 (2018). https://doi.org/10.1007/s12036-018-9549-y

    Article  ADS  Google Scholar 

  26. Z. Arzoumanian et al., The NANOGrav 11-year data set: high-precision timing of 45 millisecond pulsars. ApJS 235, 37 (2018). https://doi.org/10.3847/1538-4365/aab5b0

    Article  ADS  Google Scholar 

  27. D.J. Reardon et al., Timing analysis for 20 millisecond pulsars in the Parkes pulsar timing array. MNRAS 455, 1751–1769 (2016). https://doi.org/10.1093/mnras/stv2395

    Article  ADS  Google Scholar 

  28. J.P.W. Verbiest et al., The international pulsar timing array: first data release. MNRAS 458, 1267–1288 (2016). https://doi.org/10.1093/mnras/stw347

    Article  ADS  Google Scholar 

  29. B.B.P. Perera et al., The international pulsar timing array: second data release. MNRAS 490, 4666–4687 (2019). https://doi.org/10.1093/mnras/stz2857

    Article  ADS  Google Scholar 

  30. The ATNF pulsar database. https://www.atnf.csiro.au/research/pulsar/psrcat/

  31. R.N. Manchester, G.B. Hobbs, A. Teoh, M. Hobbs, The Australia telescope national facility pulsar catalogue. AJ 129, 1993–2006 (2005). https://doi.org/10.1086/428488

    Article  ADS  Google Scholar 

  32. Pulsars in globular clusters. https://www3.mpifr-bonn.mpg.de/staff/pfreire/GCpsr.html

  33. A.G. Lyne, A. Brinklow, J. Middleditch, S.R. Kulkarni, D.C. Backer, The discovery of a millisecond pulsar in the globular cluster M28. Nature 328, 399–401 (1987). https://doi.org/10.1038/328399a0

    Article  ADS  Google Scholar 

  34. Y. Saito, N. Kawai, T. Kamae, S. Shibata, T. Dotani, S.R. Kulkarni, Detection of magnetospheric X-ray pulsation from millisecond pulsar PSR B1821–24. ApJL 477, L37–L40 (1997). https://doi.org/10.1086/310512

    Article  ADS  Google Scholar 

  35. J.H.K. Wu et al., Search for pulsed \(\gamma \)-ray emission from globular cluster M28. ApJ 765, L47 (2013)

    Article  ADS  Google Scholar 

  36. A.V. Bilous, T.T. Pennucci, P. Demorest, S.M. Ransom, A broadband radio study of the average profile and giant pulses from PSR B1821–24A. ApJ 803, 83 (2015)

    Article  ADS  Google Scholar 

  37. X.J. Liu, M.J. Keith, C.G. Bassa, B.W. Stappers, Correlated timing noise and high-precision pulsar timing: measuring frequency second derivatives as an example. MNRAS 488, 2190–2201 (2019). https://doi.org/10.1093/mnras/stz1801

    Article  ADS  Google Scholar 

  38. M. Kerr et al., The Parkes pulsar timing array project: second data release. PASA 37, e020 (2020). https://doi.org/10.1017/pasa.2020.11

    Article  ADS  MathSciNet  Google Scholar 

  39. M. Cadelano et al., Discovery of three new millisecond pulsars in Terzan 5. ApJ 855, 125 (2018). https://doi.org/10.3847/1538-4357/aaac2a

    Article  ADS  Google Scholar 

  40. J. Binney, S. Tremaine, Galactic Dynamics (Princeton University Press, Princeton, 1987)

    MATH  Google Scholar 

  41. M. Tucci, M. Volonteri, Constraining supermassive black hole evolution through the continuity equation. A&A 600, A64 (2017). https://doi.org/10.1051/0004-6361/201628419

    Article  ADS  Google Scholar 

  42. M. Celoria, R. Oliveri, A. Sesana, M. Mapelli. Lecture notes on black hole binary astrophysics. eprint arXiv:1807.11489, (2018)

  43. N. Sanchis-Gual, V. Quilis, J.A. Font, Estimate of the gravitational-wave background from the observed cosmological distribution of quasars. PRD 104, 024027 (2021). https://doi.org/10.1103/PhysRevD.104.024027

    Article  ADS  Google Scholar 

  44. F. De Paolis, V.G. Gurzadyan, G. Ingrosso, Pulsars tracing black holes in globular clusters. A&A 315, 396–399 (1996)

    ADS  Google Scholar 

  45. F. Abbate, M. Spera, M. Colpi, Intermediate mass black holes in globular clusters: effects on jerks and jounces of millisecond pulsars. MNRAS 487, 769–781 (2019). https://doi.org/10.1093/mnras/stz1330

    Article  ADS  Google Scholar 

  46. R. Nan, The five-hundred aperture spherical radio telescope (FAST) project. IJMPD 20, 989–1024 (2011). https://doi.org/10.1142/S0218271811019335

    Article  ADS  Google Scholar 

  47. M. Bailes et al., The MeerKAT telescope as a pulsar facility: system verification and early science results from MeerTime. PASA 37, e028 (2020). https://doi.org/10.1017/pasa.2020.19

    Article  ADS  Google Scholar 

  48. A. Weltman et al., Fundamental physics with the Square Kilometre Array. PASA 37, e002 (2020). https://doi.org/10.1017/pasa.2019.42

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We warmly acknowledge Andrea Possenti, of the Istituto Nazionale di Astrofisica (INAF), for many useful discussions. We also acknowledge the support of the Theoretical Astroparticle Physics (TAsP) and Euclid projects of the Istituto Nazionale di Fisica Nucleare (INFN). We thank the Referee for the useful comments.

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Contributions

All authors equally contributed to the paper. The first draft of the manuscript was written by Michele Maiorano and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Michele Maiorano.

Ethics declarations

Conflict of interest

The authors declare they have no financial interests.

Code Availability

The numerical codes are available on request.

Consent to participate

The authors give their consent.

Consent for publication

The authors give their consent for publication.

Appendix A: The Polarization Tensor Components

Appendix A: The Polarization Tensor Components

The GW polarization tensor components of the \(+\) polarization state and the \(\times \) polarization state can be determined from Eq. (6). Using Eqs. (1) and (2) one obtains:

$$\begin{aligned} \begin{aligned} e_{11}^+&= (\sin ^2\phi )-(\cos ^2\theta )(\cos ^2\phi )\\ e_{22}^+&= (\cos ^2\phi )-(\cos ^2\theta )(\sin ^2\phi )\\ e_{33}^+&= -(\sin ^2\theta )\\ e_{12}^+&= -\sin \phi \cos \phi (\cos ^2\theta +1)\\ e_{23}^+&= \sin \theta \cos \theta \cos \phi \\ e_{13}^+&= \sin \theta \cos \theta \sin \phi \\ e_{11}^\times&= 2\cos \theta \sin \phi \cos \phi \\ e_{22}^\times&= -2\cos \theta \sin \phi \cos \phi \\ e_{33}^\times&= 0\\ e_{12}^\times&= \cos \theta (\sin ^2\phi -\cos ^2\phi )\\ e_{23}^\times&= \sin \theta \cos \phi \\ e_{13}^\times&= -\sin \theta \sin \phi \\ \end{aligned} \end{aligned}$$
(14)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maiorano, M., de Paolis, F. & Nucita, A. Including millisecond pulsars inside the core of globular clusters in pulsar timing arrays. Eur. Phys. J. Plus 136, 1087 (2021). https://doi.org/10.1140/epjp/s13360-021-02098-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02098-0

Navigation