Skip to main content
Log in

Plasmon-exciton interactions in a spheroidal multilayer nanoshell for refractive index sensor application

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We used the finite difference time domain method to calculate scattering spectra for a multilayer nanoshell (MNS) consisting of a gold core, a molecular layer and a gold shell. The effects of geometrical parameters of the multilayer nanoshell (MNS) such as size, aspect ratio, the thickness of the shell and middle layer on the scattering properties of the MNS are investigated. We have also studied the plasmon-exciton coupling. In order to determine the coupling region, our numerical data are fitted to the coupled oscillator model. According to the obtained results, the plasmon-exciton coupling is found in the intermediate region. The plasmon-exciton coupling can be achieved and utilized as a sensor for sensing the refractive index changes. Variation of geometrical parameters of the multilayer nanoshell affects the strength of coupling and hence the sensitivity and detection accuracy of the sensor. The understanding of coupling mechanisms paves the way for the optimal design of the proposed sensor. We finally quantify and compare the performance of the sensor against previously introduced similar sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. P. Torma, W.L. Barnes, Strong coupling between surface plasmon polaritons and emitters: a review. Rep. Prog. Phys. 78, 013901 (2015)

    Article  ADS  Google Scholar 

  2. D.M. Coles, N. Somaschi, P. Michetti, C. Clark, P.G. Lagoudakis, P.G. Savvidis, D.G. Lidzey, Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity. Nat. Mater. 13, 712–719 (2014)

    Article  ADS  Google Scholar 

  3. N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A.V. Nalitov, M. Klaas, C.P. Dietrich, A.V. Kavokin, S. Hofling et al., Room-temperature tamm-plasmon exciton-polaritons with a WSe2 monolayer. Nat. Commun. 7, 13328 (2016)

    Article  ADS  Google Scholar 

  4. Y. Yu, Z.H. Ji, S. Zu, B.W. Du, Y.M. Kang, Z.W. Li, Z.K. Zhou, K.B. Shi, Z.Y. Fang, Ultrafast plasmonic hot electron transfer in au nanoantenna/MoS2 heterostructures. Adv. Funct. Mater. 26, 6394–6401 (2016)

    Article  Google Scholar 

  5. A. Tsargorodska, M.L. Cartron, C. Vasilev, G. Kodali, O.A. Mass, J.J. Baumberg, P.L. Dutton, C.N. Hunter, P. Torma, G.J. Leggett, Strong coupling of localized surface plasmons to excitons in light-harvesting complexes. Nano Lett. 16, 6850–6856 (2016)

    Article  ADS  Google Scholar 

  6. L.H. Lin, M.S. Wang, X.L. Wei, X.L. Peng, C. Xie, Y.B. Zheng, Photoswitchable rabi splitting in hybrid plasmon-waveguide modes. Nano Lett. 16, 7655–7663 (2016)

    Article  ADS  Google Scholar 

  7. H.S. Lee, D.H. Luong, M.S. Kim, Y. Jin, H. Kim, S. Yun, Y.H. Lee, Reconfigurable exciton-plasmon interconversion for nanophotonic circuits. Nat. Commun. 7, 13663 (2016)

    Article  ADS  Google Scholar 

  8. O. Jamadi et al., Polariton condensation phase diagram in wide-band-gap planar microcavities: GaN versus ZnO. Phys. Rev. B 93, 115205 (2016)

    Article  ADS  Google Scholar 

  9. M. Wersall, J. Cuadra, T.J. Antosiewicz, S. Balci, T. Shegai, Observation of mode splitting in photoluminescence of individual plasmonic nanoparticles strongly coupled to molecular excitons. Nano. Lett. 17, 551–558 (2017)

    Article  ADS  Google Scholar 

  10. M. Balasubrahmaniyam, D. Kar, P. Sen, P.B. Bisht, S. Kasiviswanathan, Observation of subwavelength localization of cavity plasmons induced by ultra-strong exciton coupling. Appl. Phys. Lett. 110, 171101 (2017)

    Article  ADS  Google Scholar 

  11. G. Zengin, G. Johansson, P. Johansson, T.J. Antosiewicz, M. Kall, T. Shegai, Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates. Sci. Rep. 3, 3074 (2013)

    Article  ADS  Google Scholar 

  12. S. Balci, E. Karademir, C. Kocabas, Strong coupling between localized and propagating plasmon polaritons. Opt. Lett. 40, 3177–3180 (2015)

    Article  ADS  Google Scholar 

  13. A. Delga, J. Feist, J. Bravo-Abad, F.J. Garcia-Vidal, Quantum emitters near a metal nanoparticle: strong coupling and quenching. Phys. Rev. Lett. 112, 253601 (2014)

    Article  ADS  Google Scholar 

  14. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007)

    Book  Google Scholar 

  15. W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

    Article  ADS  Google Scholar 

  16. H. Rahman, H. Ali, I. Ahmad, R.U. Din, G.Q. Ge, Coherent control of surface plasmon polariton via spontaneously generated coherence. Eur. Phys. J. Plus 136, 267 (2021)

    Article  Google Scholar 

  17. Y. Tang, X. Yu, H. Pan, J. Chen, B. Audit, F. Argoul, S. Zhang, J. Xu, Numerical study of novel ratiometric sensors based on plasmon-exciton coupling. Hal. 71, 2377–2384 (2017)

    Google Scholar 

  18. V. Krivenkov, S. Goncharov, I. Nabiev, Y.P. Rakovich, Induced transparency in plasmon-exciton nanostructures for sensing applications. Laser Photon. Rev. 13, 1800176 (2019)

    Article  ADS  Google Scholar 

  19. T.J. Antosiewicz, S.P. Apell, T. Shegai, Plasmon-exciton interactions in a core−shell geometry: from enhanced absorption to strong coupling. ACS Photon. 1, 454–463 (2014)

    Article  Google Scholar 

  20. H. Chen, L. Shao, KCh. Woo, J. Wang, H.Q. Lin, Plasmonic-molecular resonance coupling: plasmonic splitting versus energy transfer. J. Phys. Chem. C 116, 14088–14095 (2012)

    Article  Google Scholar 

  21. Y. Hu, R.C. Fleming, R.A. Drezek, Optical properties of gold-silica-gold multilayer nanoshells. Opt. Express. 16, 19579 (2008)

    Article  ADS  Google Scholar 

  22. A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Norwood, (2005).

  23. A. Mohammadi, F. Kaminski, V. Sandoghdar, M. Agio, Fluorescence enhancement with the optical (bi-) conical antenna. J. Phys. Chem. C 114, 7372–7377 (2010)

    Article  Google Scholar 

  24. A. Mohammadi, F. Kaminski, V. Sandoghdar, M. Agio, Spheroidal nanoparticles as nanoantennas for fluorescence enhancement. Int. J. Nanotech. 6, 902–914 (2009)

    Article  Google Scholar 

  25. A. Mohammadi, V. Sandoghdar, M. Agio, Gold nanorods and nanospheroids for enhancing spontaneous emission. New J. Phys. 10, 1–14 (2008)

    Article  Google Scholar 

  26. S.V. Gaponenko, D.V. Guzatov, Colloidal plasmonics for active nanophotonics. Proc. IEEE 108, 704 (2020)

    Article  Google Scholar 

  27. X. Wu, S.K. Gray, M. Pelton, Quantum-dot-induced transparency in a nanoscale plasmonic resonator. Opt. Express 13, 23633 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Khordad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Firoozi, A., Khordad, R., Mohammadi, A. et al. Plasmon-exciton interactions in a spheroidal multilayer nanoshell for refractive index sensor application. Eur. Phys. J. Plus 136, 1073 (2021). https://doi.org/10.1140/epjp/s13360-021-02094-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02094-4

Navigation