Skip to main content
Log in

Numerical investigation of mixed convection of nanofluid flow in oblique rectangular microchannels with nanofluid jet injection

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In the present numerical study, the effect of microchannel flow with the angle of fluid jet injection is investigated. This paper aims to investigate the hydrodynamic behavior of flow and heat transfer for mixed convection in a two-dimensional rectangular microchannel with an angle of attack of 0°–180°. Water/SWCNT nanofluids are used as the cooling fluid with different volume fractions. The results of this study show that due to heat exchange between hot and cold sources, the thermal boundary layer is unavoidable. In all temperature graphs, with increasing Reynolds number, due to fluid momentum amplification, the thermal boundary layer is significantly reduced and the injection effects for the cooling fluid become important. Temperature distribution between fluid layers, especially in areas close to the hot surface, is associated with significant gradients. At Re = 25, due to the slower movement of the fluid compared to Re = 100, the growth of the thermal boundary layer is significant and even affects the central areas of the microchannel. Increasing the mass flow rate of the coolant increases the velocity and improves the mixing of the fluid by further advancing the fluid toward the microchannel outlet. Among all of the studied cases, case (3) has the highest friction factor due to gravitational effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

C f :

Friction factor

C p :

Heat capacity (J kg1 K1)

g :

Gravitational acceleration (m·s−2)

h :

Local heat transfer coefficient (W m−2 K−1)

k :

Thermal conductivity (Wm1 K1)

Nu:

Nusselt number

P :

Fluid pressure (Pa)

Pr:

Prandtl number

Ra:

Rayleigh number

S :

Entropy generation (J Kg−1 K−1)

T :

Temperature (K)

u, v :

Velocity components in x, y-directions (ms1)

α :

Thermal diffusivity (m2·s1)

β :

Thermal expansion coefficient (K−1)

φ :

Volume fraction of nanoparticles v

μ :

Dynamic viscosity (Pa s1)

θ :

Dimensionless temperature

ρ :

Density (kg m3)

υ :

Kinematics viscosity (m2 s1)

c:

Cold

Eff:

Effective

f:

Base fluid (pure Water)

h:

Hot

In:

Inlet

nf:

Nanofluid

p:

Solid nanoparticles

References

  1. T. Tjahjono, M. Elveny, S. Chupradit, D. Bokov, H.T. Hoi, M. Pandey, Trans. Indian Inst. Metals 1–7 (2021)

  2. M. Rohaniyan, A. Davoodnia, S.A. Beyramabadi, A. Khojastehnezhad, Appl. Organomet. Chem. 33(5), (2019). https://doi.org/10.1002/aoc.4881

    Article  Google Scholar 

  3. J. Qaderi, Int. J. Innovat. Res. Sci. Stud. 3(2), 33–40 (2020). https://doi.org/10.53894/ijirss.v3i2.31

    Article  Google Scholar 

  4. M. Bagheri, S. Akbarzadeh, R. Tikani, M. Raisivand, Proc. Inst. Mech. Eng, Part J: J. Eng. Trib. 230 (2016)

  5. S.A. Rozati, F. Montazerifar, O.A. Akbari, S. Hoseinzadeh, V. Nikkhah, A. Marzban, H. Abdolvand, M. Goodarzi (2020) https://doi.org/10.1002/mma.7036

  6. S.G. Al-Shawi, N.A. Alekhina, S. Aravindhan, L. Thangavelu, A. Elena, N.V. Kartamysheva, R.R. Zakieva, J. Nanostruct. 11(1), 181–188 (2021)

    Google Scholar 

  7. Y.-P. Xu, P. Ouyang, S.-M. Xing, L.-Y. Qi, H. Jafari, Energy Rep. 7, 2057–2067 (2021). https://doi.org/10.1016/j.egyr.2021.04.016

    Article  Google Scholar 

  8. E. Olasehinde, S. Abegunde, M. Adebayo, Casp. J. Environ. Sci. 18(4), 329–344 (2020). https://doi.org/10.22124/cjes.2020.4279

    Article  Google Scholar 

  9. A. Tashtemirova, I. Talipova, E. Barylnikova, Y. Talipova, Casp. J. Environ. Sci. 18(5), 481–487 (2020). https://doi.org/10.22124/cjes.2020.4475

    Article  Google Scholar 

  10. M.G.M. Johar, S.F. Azam, M.S. Ab Yajid, Syst. Rev. Pharm. 11(1), 633–639 (2020)

    Google Scholar 

  11. A.O. Elfaki, O.A. Abouabdalla, S.L. Fong, G.M. Johar, K.L.T. Aik, R. Bachok, J. Theor. Appl. Inf. Technol. 42(1), 75–93 (2012)

    Google Scholar 

  12. J. Guo, Y. Yan, W. Liu, F. Jiang, A. Fan, Int. J. Therm. Sci. 87 (2015)

  13. N. Zheng, W. Liu, Z. Liu, P. Liu, F. Shan, Appl. Therm. Eng. 90 (2015)

  14. F. Shan, Z. Liu, W. Liu, Y. Tsuji, Chem. Eng. Sci. 152 (2016)

  15. Z. Li, U. Khaled, A.A. Al-Rashed, M. Goodarzi, M. Sarafraz, R. Meer, Int. J. Heat Mass Transf. 149 (2020)

  16. H. Khan, M.E.M. Soudagar, R.H. Kumar, M.R. Safaei, M. Farooq, A. Khidmatgar, N.R. Banapurmath, R.A. Farade, M.M. Abbas, A. Afzal, Symmetry 12(6) (2020)

  17. R.Z. Homod, A. Almusaed, A. Almssad, M.K. Jaafar, M. Goodarzi, K.S. Sahari, J. Energy Storage (2020)

  18. J. Yang, W. Liu, Energy Convers. Manag. 101 (2015)

  19. N. Zheng, P. Liu, F. Shan, Z. Liu, W. Liu, Int. J. Therm. Sci. 101 (2016)

  20. A.K. Barik, A. Mukherjee, P. Patro, Int. J. Therm. Sci. 98(12) (2015)

  21. J.Y. San, J.J. Chen, Int. J. Heat Mass Transf. 71 (1) (2014)

  22. A.J. Robinson, E. Schnitzler, Exp. Therm. Fluid Sci. 32(1) (2007)

  23. Y. Zhuang, C.F. Ma, M. Qin, Int. J. Heat Mass Transf. 40(97) (1997)

  24. S.B. Chin, J.J. Foo, Y.L. Lai, T.K.K Yong, Heat Mass Transf. 49 (2013)

  25. C. Wang, L. Luo, L. Wang, B. Sunden, Int. J. Heat Mass Trans. 96(5) 2016.

  26. C. Wang, L. Wang, B. Sunden, Int. J. Heat Mass Trans. 88(9) (2015)

  27. B.A. Jasperson, Y. Jeon, K.T. Turner, F.E. Pfefferkorn, W. Qu, IEEE Trans. 33 (2010)

  28. H. Sivasankaran, G. Asirvatham, J. Bose, B. Albert, Therm. Sci. 14(1) (2010)

  29. M. Mital, Appl. Therm. Eng. 50(1) (2012).

  30. T.C. Hung, W.M. Yan, X.D. Wang, C.Y. Chang, Int. J. Heat Mass Transf. 55(9) (2012)

  31. B. Zang, T.H. New, Phys. Fluids 29(3) (2017)

  32. A. Radhouane, N.M. Said, H. Mhiri, Ph. Bournot, G. Palec, Environ. Fluid Mech. 16(1) (2016)

  33. Q. Gravndyan, O.A. Akbari, D. Toghraie, A. Marzban, R. Mashayekhi, R. Karimi, F. Pourfattah, J. Mol. Liq. 236 (2017)

  34. M.R. Shamsi, O.A. Akbari, A. Marzban, D. Toghraie, R. Mashayekhi, Physica E 93 (2017)

  35. O. Manca, S. Nardini, D. Ricci, Appl. Therm. Eng. 37 (2012)

  36. E. Farsad, S.P. Abbasi M.S. Zabihi, in 20th Annual International Conference on Mechanical Engineering (2012)

  37. M. Kalteh, A. Abbassi, M. Saffar-Avval, Int. J. Heat Fluid Flow 32(1) (2011).

  38. A. Joodaki, A. Ashrafizadeh, Modares Mech. Eng. 14(9) (2014)

  39. N.S. Akbar, M. Raza, R. Ellahi, J. Mag. Mag. Mater. (2015). https://doi.org/10.1016/j.jmmm.2014.12.087

    Article  Google Scholar 

  40. X. Zhang, H. Gu, M. Fujii, Exp. Therm. Fluid Sci. 31 (2007)

  41. A. Raisi, B. Ghasemi, S. M. Aminossadati, Num. Heat Trans. Part A 59 (2011)

  42. S.M. Aminossadati, B. Ghasemi, Eur. J. Mech. B/Fluids 28 (2009)

  43. Q. Gravndyan, O.A. Akbari D. Toghraie, A. Marzban R. Mashayekhi, R. Karimi F. Pourfattah, J. Mol Liq. 236 (2017)

  44. C. Leng, X.D. Wang, T.H. Wang, W.M. Yan, Int. J. Heat Mass Transf. 84 (2015)

  45. X. Wang, X. Xu, S.U.S. Choi, J. Thermophys. Heat Transf. 13 (1999)

  46. Z. Nikkhah, A. Karimipour, M.R. Safaei, P. Forghani-Tehrani, M. Goodarzi, Mahidzal Dahari, Somchai Wongwises, Int. Commun. Heat Mass Trans. 68 (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davood Toghraie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatholahi, M., Anvari, A., Akbari, O.A. et al. Numerical investigation of mixed convection of nanofluid flow in oblique rectangular microchannels with nanofluid jet injection. Eur. Phys. J. Plus 136, 1062 (2021). https://doi.org/10.1140/epjp/s13360-021-02072-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02072-w

Navigation