Skip to main content
Log in

Charged anisotropic compact stellar solutions in torsion-trace gravity via modified chaplygin gas model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In present work, we use an extended f(T) gravity namely \( f(T,\mathcal {T}) \) gravity, representing the coupling of torsion scalar T and the trace of energy-momentum tensor \(\mathcal {T}\). In this framework, we find the exact interior anisotropic solutions of compact stars considering Krori–Barua space-time under metric potentials, \(a(r)=Br^{2}+Cr^{3},~ b(r)=Ar^{3}\) (A,  B,  C are the unknown parameters), and applying a well-known model \(f(T,\mathcal {T})=\alpha _{1}T^{n}(r)+\beta \mathcal {T}(r)+\phi ,~n>1\). To close the system of equations, we utilize an equation of state for modified Chaplygin gas model. By the well-known matching conditions of exterior and interior space-time, we evaluate the unknown model parameters. For four different strange stars, \(PSR-J\)1614-2230, \(SAX-J\)1808.4-3658, 4U 1820-30 and \(Vela-X\)-12 (last two are added in “Appendix”), we made complete physical analysis by plotting trajectories for energy conditions, square speed of sound, mass function, compactness factor and surface redshift. It is observed that our results satisfy all the necessary and sufficient physical conditions, hence physically viable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. A.G. Riess et al., Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  2. S. Perlmutter et al., Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  3. S. Perlmutter et al., ibid 598, 102 (2003)

  4. S.M. Carroll, V. Duvvuri, M. Trodden, M.S. Turner, Phys. Rev. D 70, 043528 (2004)

    Article  ADS  Google Scholar 

  5. K. Uddin, J.E. Lidsey, R. Tavakol, Gen. Rel. Gravit. 41, 2725 (2009)

    Article  ADS  Google Scholar 

  6. S. Capozziello, M. De Laurentis, Phys. Rep. 509, 167 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  7. K.S. Stelle, Phys. Rev. D 16, 953 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  8. T. Biswas, E. Gerwick, T. Koivisto, A. Mazumdar, Phys. Rev. Lett. 108, 031101 (2012)

    Article  ADS  Google Scholar 

  9. J.C. Edmund, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006)

    Article  ADS  Google Scholar 

  10. Y.F. Cai, E.N. Saridakis, M.R. Setare, J.Q. Xia, Phys. Rep. 493, 1 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  11. S. Capozziello, M. De Laurentis, Phys. Rep. 509, 167 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  12. A. De Felice, S. Tsujikawa, Living Rev. Rel. 13, 3 (2010)

    Article  Google Scholar 

  13. S.I. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  14. V. Sahni, A. Starobinsky, Int. J. Mod. Phys. D 15, 2015 (2006)

    Article  Google Scholar 

  15. S. Nojiri, S.D. Odintsov, Phys. Lett. B 631, 1 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  16. G. Cognola et al., Phys. Rev. D 73, 084007 (2006)

    Article  ADS  Google Scholar 

  17. K. Bamba, S.D. Odintsov, L. Sebastiani, S. Zerbini, Eur. Phys. J. C 67, 295 (2010)

    Article  ADS  Google Scholar 

  18. S. Nojiri, S.D. Odintsov, Phys. Rev. D 68, 123512 (2003)

    Article  ADS  Google Scholar 

  19. S. Capozziello, V. Faraoni, Beyond Einstein Gravity: A Survey of Gravitational Theories for Cosmology and Astrophysics (Springer, New York, 2011)

    Book  MATH  Google Scholar 

  20. T. Harko, F.S.N. Lobo, S. Nojiri, S.D. Odintsov, Phys. Rev. D 84, 024020 (2011)

    Article  ADS  Google Scholar 

  21. M.J.S. Houndjo, Int. J. Mod. Phys. D 21, 1250003 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  22. F.G. Alvarenga, Phys. Rev. D 87, 103526 (2013)

    Article  ADS  Google Scholar 

  23. M. Zubair, H. Azmat, I. Noureen, Int. J. Mod. Phys. D 27, 1850047 (2018)

    Article  ADS  Google Scholar 

  24. Z. Haghani et al., Phys. Rev. D 88, 044023 (2013)

    Article  ADS  Google Scholar 

  25. S.D. Odintsov, D. Saez-Gomez, Phys. Lett. B 725, 437 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  26. M. Sharif, M. Zubair, JCAP 11, 042 (2013)

    Article  ADS  Google Scholar 

  27. M. Sharif, M. Zubair, JHEP 12, 079 (2013)

    Article  ADS  Google Scholar 

  28. V. Faraoni, Cosmology in Scalar-Tensor Gravity (Kluwer Academic Publishers, New York, 2004)

    Book  MATH  Google Scholar 

  29. M. Zubair, F. Kousar, S. Bahamonde, Phys. Dark Univ. 14, 116 (2016)

    Article  Google Scholar 

  30. R. Ferraro, F. Fiorini, Phys. Rev. D 75, 084031 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  31. E.V. Linder, Phys. Rev. D 81, 127301 (2010)

    Article  ADS  Google Scholar 

  32. T. Wang, Phys. Rev. D 84, 024042 (2011)

    Article  ADS  Google Scholar 

  33. S. Bahamonde, C.G. Böhmer, Eur. Phys. J. C 76, 578 (2016)

    Article  ADS  Google Scholar 

  34. R.J. Yang, Europhys. Lett. 93, 60001 (2011)

    Article  ADS  Google Scholar 

  35. Y.F. Cai et al., Rep. Prog. Phys. 79, 106901 (2016)

    Article  ADS  Google Scholar 

  36. A. Einstein, Sitzungsber. Preuss. Akad. Wiss. 1928, 217 (1928)

    Google Scholar 

  37. A. Einstein, Sitzungsber. Preuss. Akad. Wiss. 1929, 156 (1929)

    Google Scholar 

  38. V.C. De Andrade, L.C.T. Guillen, J.G. Pereira. arXiv:grqc/0011087

  39. T. Harko, S.N.L. Francisco, G. Otalora, E.N. Saridakis, J. Cosmol. Astropart. Phys. 12, 021 (2014)

    Article  ADS  Google Scholar 

  40. G.I. Salako et al., Astrophys. Space Sci. 358, 13 (2015)

    Article  ADS  Google Scholar 

  41. B.S. Nassur et al., Astrophys. Space Sci. 360, 60 (2015)

    Article  ADS  Google Scholar 

  42. Y.F. Cai, S. Capozziello, M. De Laurentis, E.N. Saridakis, Rep. Prog. Phys. 79, 106901 (2016)

    Article  ADS  Google Scholar 

  43. D. Momeni, R. Myrzakulov, Int. J. Geom. Meth. Mod. Phys. 11, 1450077 (2014)

    Article  Google Scholar 

  44. K. Schwarzschild, Kl. Math. Phys. 24, 424 (1916)

    Google Scholar 

  45. R.C. Tolman, Phys. Rev. 55, 364 (1939)

    Article  ADS  Google Scholar 

  46. G. Lemaitre, Ann. Soc. Sci. Bruxells A 53, 51 (1933)

    Google Scholar 

  47. R. Ruderman, Ann. Rev. Astron. Astrophys. 10, 427 (1972)

    Article  ADS  Google Scholar 

  48. R.L. Bowers, E.P.T. Liang, Astrophys. J. 188, 657 (1974)

    Article  ADS  Google Scholar 

  49. G. Abbas et al., Astrophys. Space Sci. 357, 158 (2015)

    Article  ADS  Google Scholar 

  50. S.K. Tripathy, B. Mishra, Eur. Phys. J. Plus 131, 273 (2016)

    Article  Google Scholar 

  51. M.H. Murad, Astrophys. Space Sci. 20, 361 (2016)

    MathSciNet  Google Scholar 

  52. S.K. Maurya, S.D. Maharaj, Eur. Phys. J. C 77, 328 (2017)

    Article  ADS  Google Scholar 

  53. D.K. Matondo, S.D. Maharaj, S. Ray, Eur. Phys. J. C 78, 437 (2018)

    Article  ADS  Google Scholar 

  54. B.C. Paul, R. Deb, Astrophys. Space Sci. 354, 421 (2014)

    Article  ADS  Google Scholar 

  55. P. Saha, U. Debnath, Adv. High Energy Phys. 2018, 3901790 (2018)

    Article  Google Scholar 

  56. M. Zubair, I.H. Sardar, F. Rahaman, G. Abbas, Astrophys. Space Sci. 361, 238 (2016)

    Article  ADS  Google Scholar 

  57. T. Harko, F.S. Lobo, G. Otalora, E.N. Saridakis, J. Cosmol. Astropart. Phys. 12, 021 (2014)

    Article  ADS  Google Scholar 

  58. M.G. Ganiou, I.G. Salako, M.J.S. Houndjo, J. Tossa, Astrophys. Space Sci. 361, 57 (2016)

    Article  ADS  Google Scholar 

  59. R. Saleem, F. Kramat, M. Zubair, Phys. Dark Univ. 30, 100592 (2020)

    Article  Google Scholar 

  60. G. Abbas, M. Zubair, G. Mustafa, Astrophys. Space Sci. 358, 26 (2015)

    Article  ADS  Google Scholar 

  61. F.S. Lobo, A.V. Arellano, Class. Quant. Gravit. 24, 1069 (2007)

    Article  ADS  Google Scholar 

  62. S.K. Maurya et al., Eur. Phys. J. C 75, 389 (2015)

    Article  ADS  Google Scholar 

  63. S.K. Maurya et al., Astrophys. Space Sci. 361, 163 (2016)

    Article  ADS  Google Scholar 

  64. D. Horvat, S. Ilijic, A. Marunovic, Class. Quant. Gravit. 26, 025003 (2008)

    Article  ADS  Google Scholar 

  65. R. Weitzenböck, Invarianten-Theories (Nordhoff, Groningen, 1923)

    MATH  Google Scholar 

  66. G. Farrugia, J. Levi Said, M.L. Ruggiero, Phys. Rev. D 93, 104034 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  67. C.G. Boehmer, A. Mussa, N. Tamanini, Class. Quant. Gravit. 28, 245020 (2011)

    Article  ADS  Google Scholar 

  68. H.B. Benaoum, Adv. High Energy Phys. 2012, 357802 (2012)

    Article  MathSciNet  Google Scholar 

  69. G. Abbas et al., Iran J. Sci. Technol. A 42, 1659 (2018)

    Article  Google Scholar 

  70. L. Herrera, Phys. Lett. A 165, 206 (1992)

    Article  ADS  Google Scholar 

  71. H.A. Buchdahl, Phys. Rev. D 116, 1027 (1959)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabia Saleem.

Appendix: Graphical analysis of \(Vela-X\)-12 and 4U1820-30

Appendix: Graphical analysis of \(Vela-X\)-12 and 4U1820-30

In this Appendix, we present the graphical analysis of the specific strange stars namely, \(Vela-X\)-12 and 4U1820-30. Our results are consistent and stable for all physical parameters as shown in Figs. 2223242526272829303132333435363738394041 and 42.

Fig. 22
figure 22

\(\rho \) versus r for different stars by varying \(\beta \) and n

Fig. 23
figure 23

\(p_{r}\) versus r for different stars by varying \(\beta \) and n

Fig. 24
figure 24

\(p_{t}\) versus r for different stars by varying \(\beta \) and n

Fig. 25
figure 25

\(\frac{d\rho }{dr}\) versus r for different stars by varying \(\beta \) and n

Fig. 26
figure 26

\(\frac{dp_{r}}{dr}\) versus r for different stars by varying \(\beta \) and n

Fig. 27
figure 27

\(\frac{d^{2}\rho }{dr^{2}}\) versus r for different stars by varying \(\beta \) and n

Fig. 28
figure 28

\(\frac{d^{2}p_{r}}{dr^{2}}\) versus r for different stars by varying \(\beta \) and n

Fig. 29
figure 29

Anisotropic parameter versus r for different stars by varying \(\beta \) and n

Fig. 30
figure 30

\(E^{2}\) versus r for different stars by varying \(\beta \) and n

Fig. 31
figure 31

\(\rho +\frac{E^{2}}{8\pi }\) versus r for different stars by varying \(\beta \) and n

Fig. 32
figure 32

\(\rho +p_{r}\) versus r for different stars by varying \(\beta \) and n

Fig. 33
figure 33

\(\rho +3p_{r}\) versus r for different stars by varying \(\beta \) and n

Fig. 34
figure 34

\(\rho +p_{t}+\frac{E^{2}}{4\pi }\) versus r for different stars by varying \(\beta \) and n

Fig. 35
figure 35

\(\rho +p_{r}+2p_{t}+\frac{E^{2}}{4\pi }\) versus r for different stars by varying \(\beta \) and n

Fig. 36
figure 36

\(v^{2}_{sr}\) versus r for different stars by varying \(\beta \) and n

Fig. 37
figure 37

\(v^{2}_{st}\) versus r for different stars by varying \(\beta \) and n

Fig. 38
figure 38

\(v^{2}_{st}-v^{2}_{sr}\) versus r for different stars by varying \(\beta \) and n

Fig. 39
figure 39

\(|v^{2}_{st}-v^{2}_{sr}|\) versus r for different stars by varying \(\beta \) and n

Fig. 40
figure 40

m(r) versus r for different stars by varying \(\beta \) and n

Fig. 41
figure 41

u(r) versus r for different stars by varying \(\beta \) and n

Fig. 42
figure 42

\(z_{s}\) versus r for different stars by varying \(\beta \) and n

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleem, R., Aslam, M.I. & Zubair, M. Charged anisotropic compact stellar solutions in torsion-trace gravity via modified chaplygin gas model. Eur. Phys. J. Plus 136, 1078 (2021). https://doi.org/10.1140/epjp/s13360-021-02052-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02052-0

Navigation