Skip to main content
Log in

Charge-transport enhanced by the quantum entanglement in the photosystem II reaction center

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Revealing the role of quantum entanglement in charge-transport in the Photosystem II reaction center (PSII RC) is of great significance. In this work, we theoretically demonstrate that the robust quantum entanglement provides regulatory benefits to the charge-transport via a quantum heat engine model with two absorbed photon channels. The calculation results manifest that the dynamic charge-transport and the steady-state photosynthetic properties of the PSII RC were enhanced by the intensity of quantum entanglement. Insight into the role of quantum entanglement in photosynthesis could motivate new experimental strategies for biomimetic photosynthetic devices in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon reasonable request by contacting with the corresponding author.]

References

  1. G.R. Fleming, M.A. Ratner, Grand challenges in basic energy sciences. Phys. Today 61(7), 28 (2008)

    Article  Google Scholar 

  2. A.C. Benniston, A. Harriman, Artificial photosynthesis. Mater. Today 11(26), 26 (2008)

    Article  Google Scholar 

  3. P.K. Ghosh, A.Y. Smirnov, F. Nori, Quantum effects in energy and charge transfer in an artificial photosynthetic complex. J. Chem. Phys. 134(24), 244103 (2011)

    Article  ADS  Google Scholar 

  4. N. Lambert, Y.N. Chen, Y.C. Cheng, C.M. Li, G.Y. Chen, F. Nori, Quantum biology. Nat. Phys. 9(1), 10 (2013)

    Article  Google Scholar 

  5. K.E. Dorfman, D.V. Voronine, S. Mukamel, M.O. Scully, Photosynthetic reaction center as a quantum heat engine. PNAS 110(8), 2746 (2013)

    Article  ADS  Google Scholar 

  6. T.B. Arp, Y. Barlas, V. Aji, N.M. Gabor, Natural regulation of energy flow in a green quantum photocell. Nano Letters 16(12)(2015)

  7. H. Van Amerongen, R. Van Grondelle, and L. Valkunas. Photosynthetic Excitons, volume 10.1142/3609. World Scientific Publishing Co. Pte. Ltd., 2000

  8. H. Lee, Y.C. Cheng, G.R. Fleming, Growing-in of optical coherence in the fmo antenna complexes. Science 316(5830), 1462 (2007)

    Article  ADS  Google Scholar 

  9. V.I. Prokhorenko, A.R. Holzwarth, F.R. Nowak, T.J. Aartsma, Coherence dynamics in photosynthesis: protein protection of excitonic coherence. J. Phys. Chem. B 106(38), 9923 (2002)

    Article  Google Scholar 

  10. G.S. Engel, T.R. Calhoun, E.L. Read, T.K. Ahn, T. Mancal, Y.C. Cheng, R.E. Blankenship, G.R. Fleming, Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446(7137), 782 (2007)

    Article  ADS  Google Scholar 

  11. S. Savikhin, D.R. Buck, W.S. Struve, Oscillating anisotropies in a bacteriochlorophyll protein: evidence for quantum beating between exciton levels. Chem. Phys. 223(2–3), 303 (1997)

    Article  Google Scholar 

  12. H.G. Duan, V.I. Prokhorenko, R.J. Cogdell, K. Ashraf, A.L. Stevens, M. Thorwart, R.J.D. Miller, Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer. PNAS 114(32), 8493 (2017)

    Article  ADS  Google Scholar 

  13. L.L. Wang, M.A. Allodi, G.S. Engel, Quantum coherences reveal excited-state dynamics in biophysical systems. Nat. Rev. Chem. 3, 477 (2019)

    Article  Google Scholar 

  14. S.A. Miller, J.M. Womick, J.F. Parker, R.W. Murray, A.M. Moran, Femtosecond relaxation dynamics of au25l18 monolayer-protected clusters. J. Phys. Chem. C 113(22), 9440 (2009)

    Article  Google Scholar 

  15. E. Collini, G.D. Scholes, Electronic and vibrational coherences in resonance energy transfer along meh-ppv chains at room temperature. J. Phys. Chem. A 113(16), 4223 (2009)

    Article  Google Scholar 

  16. G. Panitchayangkoon, D. Hayes, K.A. Fransted, J.R. Caram, G.S. Engel, Long-lived quantum coherence in photosynthetic complexes at physiological temperature. PNAS 107(29), 12766 (2010)

    Article  ADS  Google Scholar 

  17. C. Creatore, M.A. Parker, S. Emmott, A.W. Chin, Efficient biologically inspired photocell enhanced by delocalized quantum states. Phys. Rev. Lett. 111, 253601 (2013)

    Article  ADS  Google Scholar 

  18. L.F. Li, S.C. Zhao, Influence of the coupled-dipoles on photosynthetic performance in a photosynthetic quantum heat engine. Chin. Phys. B 30(4), 6 (2021)

    Google Scholar 

  19. M.O. Scully, K.R. Chapin, K.E. Dorfman, M.B.S. Kim, A. Svidzinsky, Quantum heat engine power can be increased by noise-induced coherence. PNAS 108(37), 15097 (2011)

    Article  ADS  Google Scholar 

  20. A.A. Svidzinsky, K.E. Dorfman, M.O. Scully, Enhancing photovoltaic power by fano-induced coherence. Phys. Rev. A 84(5), 6140 (2011)

    Article  Google Scholar 

  21. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Quantum entanglement. Rev. Modern Phys. 81(2), 865 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  22. M. Sarovar, A. Ishizaki, G.R. Fleming, K.B. Whaley, Quantum entanglement in photosynthetic light-harvesting complexes. Nat. Phys. 3(6), 462 (2010)

    Article  Google Scholar 

  23. J.Q. Liao, J.F. Huang, L.M. Kuang, C.P. Sun, Coherent excitation-energy transfer and quantum entanglement in a dimer. Phys. Rev. A 82, 052109 (2010)

    Article  ADS  Google Scholar 

  24. Q.S. Tan, L.M. Kuang, Quantum dynamics of entanglement and single excitation transfer in LH1-RCtype trimer. Commun. Theoretical Phys. 58(9), 359 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  25. V. Vedral, Entanglement production in non-equilibrium thermodynamics. J. Phys. Conf. Seri 143(1), 012010 (2009)

    Article  MathSciNet  Google Scholar 

  26. M. Thorwart, J. Eckel, J.H. Reina, P. Nalbach, S. Weiss, Enhanced quantum entanglement in the non-markovian dynamics of biomolecular excitons. Chem. Phys. Letters 478(4), 234 (2009)

    Article  ADS  Google Scholar 

  27. M. Sarovar, Y.C. Cheng, K.B. Whaley, Environmental correlation effects on excitation energy transfer in photosynthetic light harvesting. Phys. Rev. E 83(1), 011906 (2011)

    Article  ADS  Google Scholar 

  28. F. Fassioli, A. Olaya-Castro, Distribution of entanglement in light-harvesting complexes and their quantum efficiency. New J. Phys. 12(8), 2307 (2010)

    Article  Google Scholar 

  29. H.B. Chen, P.Y. Chiu, Y.N. Chen, Vibration-induced coherence enhancement of the performance of a biological quantum heat engine. Phys. Rev. E 94(5), 052101 (2016)

    Article  ADS  Google Scholar 

  30. M. Qin, H.Z. Shen, X.X. Yi, A multi-pathway model for photosynthetic reaction center. J. Chem. Phys. 144(12), 625 (2016)

    Article  Google Scholar 

  31. J. Kern, G. Renger, Photosystem II: Structure and mechanism of the water:plastoquinone oxidoreductase. Photosynthesis Res. 94(2–3), 183 (2007)

    Article  Google Scholar 

  32. A.R. Croce, A.B.H. Van, Light-harvesting and structural organization of photosystem II: From individual complexes to thylakoid membrane. J. Photochem. Photobiol. B Biol 104(1–2), 142 (2011)

    Article  Google Scholar 

  33. E. Romero, I.H.M.V. Stokkum, V.I. Novoderezhkin, J.P. Dekker, R.V. Grondelle, Two different charge separation pathways in photosystem ii<xref rid. Biochemistry 49(20), 4300 (2010)

    Article  Google Scholar 

  34. V. I. Novoderezhkin, E. Romero, J. P. Dekker, R. V. Grondelle, Multiple charge separation pathways in photosystem II: Modeling of transient absorption kinetics. Chemphyschem A Eur. J. Chem. Phys. Physical Chem. 12(3), 681 (2015)

  35. M. Qin, H.Z. Shen, X.L. Zhao, X.X. Yi, Effects of system-bath coupling on a photosynthetic heat engine: A polaron master-equation approach. Phys. Rev. A 96(1), 012125 (2017)

    Article  ADS  Google Scholar 

  36. S. Hill, W.K. Wootters, Entanglement of a pair of quantum bits. Phys. Rev. Rett. 78(26), 5022 (1997)

    ADS  Google Scholar 

  37. F. Caruso, A.W. Chin, A. Datta, S.F. Huelga, M.B. Plenio, Entanglement and entangling power of the dynamics in light-harvesting complexes. Phys. Rev. A 81(6), 062346 (2010)

    Article  ADS  Google Scholar 

  38. H.G. Duan, M. Thorwart, R.J.D. Miller, Does electronic coherence enhance anticorrelated pigment vibrations under realistic conditions ? J. Chem. Phys. 151(11), 114115 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We offer our thanks for the financial support from the National Natural Science Foundation of China (Grant Nos. 62065009 and 61565008), and Yunnan Fundamental Research Projects, China (Grant No. 2016FB009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun-Cai Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. This article does not contain any studies with human participants or animals performed by any of the authors. Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, LF., Zhao, SC. & Xu, LX. Charge-transport enhanced by the quantum entanglement in the photosystem II reaction center. Eur. Phys. J. Plus 136, 1050 (2021). https://doi.org/10.1140/epjp/s13360-021-02009-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02009-3

Navigation