Skip to main content
Log in

Photosynthetic properties assisted by the quantum entanglement in two adjacent pigment molecules

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The quantum dynamics of entanglement is widely revealed in photosynthetic light-harvesting complexes. Different from the previous work, we explore the properties of exciton transport and photosynthesis assisted by the quantum entanglement in two adjacent pigment molecules, which are measured by the population dynamics behaviors, the j-V characteristics and by the output power via a photosynthetic quantum heat engine model. A more robust exciton transport dynamic behavior is compared with those without quantum entanglement, and the photosynthetic characteristics evaluated by the output current and power were proved to be enhanced by the quantum entanglement at different ambient temperatures. These results may point toward the possibility for artificial photosynthetic nanostructures inspired by this quantum biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

This manuscript has associated data in a data repository.[Authors’ comment: All data included in this manuscript are available upon resonable request by contaicting with the corresponding author.]

References

  1. G. Vidal, R.F. Werner, Computable measure of entanglement. Phys. Rev. A 65(3), 032314 (2002)

    Article  ADS  Google Scholar 

  2. A.K. Pati, Entanglement in non-hermitian quantum theory. Pramana 73(3), 485 (2009)

    Article  ADS  Google Scholar 

  3. B. Nayak, N. Ghosh, A.S. Majumdar, Environment induced entanglement in cavity-qed. Indian J. Phys. 84(8), 1039 (2010)

    Article  ADS  Google Scholar 

  4. A. Tamulis, M. Grigalavicius, Quantum entanglement in photoactive prebiotic systems. Syst. Synth. Biol. 8(2), 117 (2014)

    Article  Google Scholar 

  5. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  6. C. Kokail, R. van Bijnen, A. Elben, B. Vermersch, P. Zoller, Entanglement hamiltonian tomography in quantum simulation. Nat. Phys. (2021). https://doi.org/10.1038/s41567-021-01260-w

    Article  Google Scholar 

  7. A.B.M. Thorwart, B.J. Eckel, C.J.H. Reina, A.P. Nalbach, B.D.S. Weiss, Enhanced quantum entanglement in the non-markovian dynamics of biomolecular excitons. Chem. Phys. Lett. 478(4), 234 (2009)

    Article  ADS  Google Scholar 

  8. L. Quiroga, F.J. Rodrguez, M.E. Ramrez, R. Pars, Nonequilibrium thermal entanglement. Phys. Rev. A 75(3), 723 (2012)

    Google Scholar 

  9. Y.C. Lin, P.Y. Yang, W.M. Zhang, Non-equilibrium quantum phase transition via entanglement decoherence dynamics. Sci. Rep. 6, 34804 (2016)

    Article  ADS  Google Scholar 

  10. A. Dey, D.S. Bhakuni, B.K. Agarwalla, A. Sharma, Quantum entanglement and transport in a non-equilibrium interacting double-dot system: The curious role of degeneracy. J. Phys. Condens. Matter 32(7), 075603 (2019)

    Article  ADS  Google Scholar 

  11. V. Vedral, Quantifying entanglement in macroscopic systems. Nature 453(7198), 1004 (2008)

    Article  ADS  Google Scholar 

  12. M. Pant, H. Krovi, D. Towsley, L. Tassiulas, B.P. Jiang, L.D. Englund, S. Guha, Routing entanglement in the quantum internet. NPJ Quantum Inf. 5(25), 1–9 (2019)

    Google Scholar 

  13. D. Paneru, E. Cohen, R. Fickler, R.W. Boyd, E. Karimi, Entanglement: quantum or classical? Rep. Progress Phys. 83(6), 064001 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  14. J. Sperling, A. Perez-Leija, K. Busch, C. Silberhorn, Mode-independent quantum entanglement for light. Phys. Rev. A 100(10), 062129 (2019)

    Article  ADS  Google Scholar 

  15. Y. Wang, Entanglement in quantum process algebra. Int. J. Theor. Phys. 58, 3611 (2019)

    Article  MathSciNet  Google Scholar 

  16. S. Giacomo, N.S. Vyacheslav, S.R. Filippus, B. Andreas, Entanglement of truncated quantum states. Quantum Sci. Technol. 5(3), 035012 (2020)

    Article  Google Scholar 

  17. K.K. Sharma, V.P. Gerdt, Quantum information scrambling and entanglement in bipartite quantum states. Quantum Inf. Process. 20, 1573 (2021)

    MathSciNet  Google Scholar 

  18. J. Cai, S.H. Popescu, J. Briegel, Dynamic entanglement in oscillating molecules and potential biological implications. Phys. Rev. E 82(2), 21921 (2010)

    Article  ADS  Google Scholar 

  19. A. Azam, A. Davood, Entanglement evolution of a three-qubit system after interaction with even three-mode nonlinear coherent state. Phys. Scr. 96(4), 045101 (2021)

    Article  ADS  Google Scholar 

  20. L.F. Li, S.C. Zhao, Influence of the coupled-dipoles on photosynthetic performance in a photosynthetic quantum heat engine. Chin. Phys. B 30(4), 044215 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  21. N. Stritzelberger, L.J. Henderson, V. Baccetti, N.C. Menicucci, A. Kempf, Entanglement harvesting with coherently delocalized matter. Phys. Rev. D 103(14), 016007 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  22. A. Belfakir, Y. Hassouni, Bipartite entanglement of generalized barutcgirardello nonlinear coherent states. Quantum Inf. Process. 20, 8 (2021)

    Article  ADS  Google Scholar 

  23. B.S. Jadot, P.A. Mortemousque, E. Chanrion et al., Distant spin entanglement via fast and coherent electron shuttling. Nat. Nanotechnol. 16, 570–575 (2021)

    Article  ADS  Google Scholar 

  24. Y. Zhou, Entanglement detection under coherent noise: Greenberger-horne-zeilinger-like states. Phys. Rev. A 101(11), 012301 (2020)

    Article  ADS  Google Scholar 

  25. M. Tiersch, S. Popescu, H. J. Briegel. A critical view on transport and entanglement in models of photosynthesis. Phil. Trans. R. Soc. A, p. 3703771 (2012)

  26. J. S. Cao, R. J. Cogdell, D. F. Coker, H. G. Duan, J. U. Hauer, T. L. C. Jansen, Tomáš Mančal, R. J. D. Miller, J. P. Ogilvie, V. I. Prokhorenko, T. Renger, H. S. Tan, R. Tempelaar, M. Thorwart, E. Thyrhaug, S. Westenhoff, D. Zigmantas. Quantum biology revisited. Sci. Adv. 6(14):eaaz4888 (2020)

  27. M. Sarovar, A. Ishizaki, Graham R. Fleming, K. Birgitta Whaley, Quantum entanglement in photosynthetic light-harvesting complexes. Nat. Phys. 6(6), 462 (2010)

  28. Anatoly A. Svidzinsky, Konstantin E. Dorfman, Marlan O. Scully, Enhancing photovoltaic power by fano-induced coherence. Phys. Rev. A 84, 053818 (2011)

    Article  ADS  Google Scholar 

  29. Konstantin E. Dorfman, Moochan B. Kim, Anatoly A. Svidzinsky, Increasing photocell power by quantum coherence induced by external source. Phys. Rev. A 84, 053829 (2011)

    Article  ADS  Google Scholar 

  30. M. B. Plenio, S. Virmani. An introduction to entanglement measures. Quantum Inf. Comput. 7(1):1–51 (2007). https://dl.acm.org/doi/10.5555/2011706.2011707

  31. F. Caruso, W. Chin, A. Datta, S.F. Huelga, M.B. Plenio, Entanglement and entangling power of the dynamics in light-harvesting complexes. Phys. Rev. A 81, 062346 (2010)

    Article  ADS  Google Scholar 

  32. M. Qin, H.Z. Shen, X.X. Yi, A multi-pathway model for photosynthetic reaction center. J. Chem. Phys. 144(12), 125103 (2016)

    Article  ADS  Google Scholar 

  33. S.C. Zhao, J.Y. Chen, Enhanced quantum yields and efficiency in a quantum dot photocell modeled by a multi-level system. New J. Phys. 21(10), 103015 (2019)

    Article  ADS  Google Scholar 

  34. S.Q. Zhong, S.C. Zhao, S.N. Zhu, Photovoltaic performances in a cavity-coupled double quantum dots photocell. Res. Phys. 27, 104503 (2021)

    Google Scholar 

  35. S.C. Zhao, Q.X. Wu, High quantum yields generated by a multi-band quantum dot photocell. Superlattices Microstruct. 137, 106329 (2020)

    Article  Google Scholar 

  36. S.Q. Zhong, S.C. Zhao, S.N. Zhu, Photovoltaic properties enhanced by the tunneling effect in a coupled quantum dot photocell. Res. Phys. 24, 104094 (2021)

    Google Scholar 

  37. Y. Mazal, Y. Meir, Y. Dubi, Nonmonotonic thermoelectric currents and energy harvesting in interacting double quantum dots. Phys. Rev. B 99(10), 075433 (2019)

    Article  ADS  Google Scholar 

  38. S.C. Zhao, J.Y. Chen, X. Li, Different roles of quantum interference in a quantum dot photocell with two intermediate bands. Eur. Phys. J. Plus 135(11), 892 (2020)

    Article  Google Scholar 

  39. H. Hannes, H. Jonas, R. Stefan, Influence of external contacting on electroluminescence and fill factor measurements. Solar Energy Mater. Solar Cells 152, 180–186 (2016)

    Article  Google Scholar 

  40. C.H. Chiang, C.G. Wu, Bulk heterojunction perovskitecpcbm solar cells with high fill factor. Nat. Photon. 10(3), 196–200 (2016)

    Article  ADS  Google Scholar 

  41. S. Surdo, R. Carzino, A. Diaspro, M. Duocastella, Single-shot laser additive manufacturing of high fill-factor microlens arrays. Adv. Opt. Mater. 6(5), 1701190 (2018)

    Article  Google Scholar 

  42. J.Y. Chen, S.C. Zhao, Radiative recombination rate suppressed in a quantum photocell with three electron donors. Eur. Phys. J. Plus 135(92), 1–8 (2020)

    ADS  Google Scholar 

  43. M.O. Scully, K.R. Chapin, K.E. Dorfman, M.B. Kim, A. Svidzinsky, Quantum heat engine power can be increased by noise-induced coherence. PNAS 108(37), 15097–15100 (2011)

    Article  ADS  Google Scholar 

  44. K.E. Dorfman, D.V. Voronine, S. Mukamel, M.O. Scully, Photosynthetic reaction center as a quantum heat engine. PNAS 110(8), 2746–2751 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 62065009 and 61565008 ), Yunnan Fundamental Research Projects, China (Grant No. 2016FB009 ).

Author information

Authors and Affiliations

Authors

Contributions

S. C. Zhao conceived the idea. L. X. Xu performed the numerical computations and wrote the draft, and S. C. Zhao did the analysis and revised the paper. L. X. Xu and L. F. Li participated in part of the discussion.

Corresponding author

Correspondence to Shun-Cai Zhao.

Ethics declarations

Conflict of interest

The authors declare no competing financial or non-financial interests. This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, LX., Zhao, SC. & Li, LF. Photosynthetic properties assisted by the quantum entanglement in two adjacent pigment molecules. Eur. Phys. J. Plus 137, 683 (2022). https://doi.org/10.1140/epjp/s13360-022-02858-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02858-6

Navigation