Skip to main content
Log in

Periodic solutions from Lie symmetries for the generalized Chen–Lee–Liu equation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The nonlinear generalized Chen–Lee–Liu 1+1 evolution equation which describes the propagation of an optical pulse inside a monomode fiber is studied by using the method of Lie symmetries and the singularity analysis. Specifically, we determine the Lie point symmetries of the Chen–Lee–Liu equation and we reduce the equation by using the Lie invariants in order to determine similarity solutions. The solutions that we found have periodic behavior and describe optical solitons. Furthermore, the singularity analysis is applied in order to write algebraic solutions of the Chen–Lee–Liu with the use of Laurent expansions. The latter analysis supports the result for the existence of periodic behavior of the solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G.W. Bluman, S. Kumei, Symmetries of Differential Equations (Springer, New York, 1989)

    Book  MATH  Google Scholar 

  2. H. Stephani, Differential Equations: Their Solutions Using Symmetry (Cambridge University Press, New York, 1989)

    MATH  Google Scholar 

  3. P.J. Olver, Applications of Lie Groups to Differential Equations (Springer, New York, 1993)

    Book  MATH  Google Scholar 

  4. N.H. Ibragimov, CRC Handbook of Lie Group Analysis of Differential Equations, Volume I: Symmetries, Exact Solutions, and Conservation Laws (CRS Press LLC, Boca Raton, 2000)

    Google Scholar 

  5. L.V. Ovsiannikov, Group Analysis of Differential Equations (Academic Press, New York, 1982)

    MATH  Google Scholar 

  6. F.M. Mahomed, A. Qadir, J. Nonlinear Math. Phys. 16, 283 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  7. H.M. Dutt, M. Safdar, A. Qadir, Arab. J. Math. 8, 163 (2019)

    Article  Google Scholar 

  8. M. Ayub, M. Khan, F.M. Mahomed, Nonlinear Dyn. 67, 2053 (2012)

    Article  Google Scholar 

  9. W. Rui, X. Zhang, Commun. Nonlinear Sci. Num. Sim. 34, 38 (2016)

    Article  Google Scholar 

  10. W. Sarlet, F. Cantrijin, SIAM Rev. 23, 467 (1981)

    Article  MathSciNet  Google Scholar 

  11. S.A. Hojman, J. Math. Phys. A Math. Gen. 24, L291 (1992)

    Article  Google Scholar 

  12. P.J. Olver, P. Rosenau, SIAM J. Appl. Math. 47, 263 (1987)

    Article  MathSciNet  Google Scholar 

  13. G.M. Webb, G.P. Zank, J. Math. Phys. A Math. Theor. 40, 545 (2007)

    Article  ADS  Google Scholar 

  14. M.T. Mustafa, A.Y. Al-Dweik, R.A. Mara’beh, SIGMA 9, 041 (2013)

  15. P.G.L. Leach, J. Math. Phys. 26, 510 (1985)

    Google Scholar 

  16. A. Paliathanasis, M. Tsamparlis, Int. J. Geom. Methods Mod. Phys. 11, 1450037 (2014)

    Article  MathSciNet  Google Scholar 

  17. S.V. Meleshko, V.P. Shapeev, J. Nonlinear Math. Phys. 18, 195 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  18. G.M. Webb, J. Phys. A Math. Gen. 23, 3885 (1990)

    Article  ADS  Google Scholar 

  19. C.M. Khalique, A. Biswas, Commun. Nonlinear Sci. Num. Sim. 14, 4033 (2009)

    Article  Google Scholar 

  20. L. Gagnon, B. Grammaticos, A. Ramani, P. Winternitz, J. Phys. A Math. Gen. 22, 499 (1989)

    Article  ADS  Google Scholar 

  21. W.I. Fushchych, A.G. Nikitin, J. Math. Phys. 38, 5944 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  22. X.X. Du, B. Tian, Y.-Q. Yuan, Z. Du, Ann. Phys. 531, 1900198 (2019)

    Article  MathSciNet  Google Scholar 

  23. Y. Benia, M. Ruggieri, A. Scapellato, Mathematics 7, 908 (2019)

    Article  Google Scholar 

  24. X. Xin, H. Liu, L. Zhang, Z. Wang, Appl. Math. Lett. 88, 132 (2019)

    Article  MathSciNet  Google Scholar 

  25. M. Pandey, Int. J. Nonlinear Sci. Num. Sim. 16, 93 (2015)

    Google Scholar 

  26. J.-G. Liu, Z.-F. Zeng, Y. He, G.-P. Ai, Int. J. Nonlinear Sci. Num. Sim. 16, 114 (2013)

    Google Scholar 

  27. P. Painlevé, Bull. Math. Soc. France 28, 201 (1900)

    Article  Google Scholar 

  28. P. Painlevé, Acta Math. 25, 1 (1902)

    Article  MathSciNet  Google Scholar 

  29. P. Painlevé, C. R. Acad. Sci. Paris 143, 1111 (1906)

    Google Scholar 

  30. S. Kowalevski, Acta. Math. 12, 177 (1889)

    Article  MathSciNet  Google Scholar 

  31. T. Brugarino, M. Sciacca, Opt. Commun. 262, 250 (2006)

    Article  ADS  Google Scholar 

  32. K. Andriopoulos, P.G.L. Leach, J. Math. Anal. Appl. 328, 860 (2007)

    Article  MathSciNet  Google Scholar 

  33. K. Andriopoulos, P.G.L. Leach, Appl. Anal. Disc. Math. 5, 230 (2011)

    Article  Google Scholar 

  34. A. Paliathanasis, J.D. Barrow, P.G.L. Leach, Phys. Rev. D 94, 023525 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  35. R. Conte, Phys. Lett. A 134, 100 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  36. R. Conte, Phys. Lett. A 140, 383 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  37. M. Vlieg-Hulstman, Math. Comput. Model. 18, 151 (1993)

    Article  MathSciNet  Google Scholar 

  38. S.K. Ivanov, Phys. Rev. A 101, 053827 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  39. C. Rogers, K.W. Chow, Phys. Rev. E 86, 037601 (2012)

    Article  ADS  Google Scholar 

  40. W.H. Lin, E. Kenghe, Schrodinger Equations in Nonlinear Systems (Springer, Singapore, 2019)

    Google Scholar 

  41. A. Hussain, A. Jhangeer, S. Tahir, Y.-M. Chu, I. Khan, K.S. Nisar, Res. Phys. 18, 103208 (2020)

    Google Scholar 

  42. M. Bilal, W. Hu, J. Ren, Eur. Phys. J. Plus 136, 385 (2021)

    Article  Google Scholar 

  43. O. Gonzalez-Gaxiola, A. Biswas, Opt. Quantum Electron. 50, 314 (2018)

    Article  Google Scholar 

  44. G. Xu, M. Confroti, A. Kudlinski, A. Mussot, S. Trillo, Phys. Rev. Lett. 118, 254101 (2017)

    Article  ADS  Google Scholar 

  45. K.B. Wolf, Ann. Phys. 172, 1 (1986)

    Article  ADS  Google Scholar 

  46. A. Bansal, A. Biswas, A.S. Alshomrani, M. Ekici, Q. Zhou, M.R. Belic, Res. Phys. 15, 102713 (2019)

    Google Scholar 

  47. C.M. Khalique, A. Biswas, J. Electromagn. Waves Appl. 23, 963 (2009)

    Article  Google Scholar 

  48. A. Bansal, A. Biswas, Q. Zhou, S. Arshed, A.K. Alzahrani, M.R. Belic, Phys. Lett. A 384, 126202 (2020)

    Article  MathSciNet  Google Scholar 

  49. V.V. Morozov, Izv. Vyss. Uchebn Zavendeni Mat. 5, 161–171 (1958)

    Google Scholar 

  50. G.M. Mubarakzyanov, Izv. Vyss. Uchebn Zavendeni Mat. 32, 114–123 (1963)

    MathSciNet  Google Scholar 

  51. G.M. Mubarakzyanov, Izv. Vyss. Uchebn Zavendeni Mat. 34, 99–106 (1963)

    MathSciNet  Google Scholar 

  52. G.M. Mubarakzyanov, Izv. Vyss. Uchebn Zavendeni Mat. 35, 104–116 (1963)

    MathSciNet  Google Scholar 

  53. J. Ray, J.L. Reid, Phys. Lett. A 71, 317 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  54. E. Pinney, Proc. Am. Math. Soc. 1, 681 (1950) erm2,erm3,erm4

  55. S. Moyo, P.G.L. Leach, J. Phys. A Math. Gen. 35, 5333 (2002)

    Article  ADS  Google Scholar 

  56. A.S.H.F. Mahomed, H.O. Bakodah, Phys. Scr. 96, 035206 (2021)

    Article  ADS  Google Scholar 

  57. H. Triki, M.M. Babatin, A. Biswas, Optik 149, 300 (2017)

    Article  ADS  Google Scholar 

  58. Z. Xu, L. Li, Z. Li, G. Zhou, Phys. Rev. E 67, 026603 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  59. A. Hasegawa, M. Matsumoto, Optical Solitons in Fibres, Springer Series in Photonics (Springer, Berlin, 2003)

    Google Scholar 

  60. M.J. Ablowitz, A. Ramani, H. Segur, Lett. Nuovo Cimento 23, 333 (1978)

    Article  MathSciNet  Google Scholar 

  61. M.J. Ablowitz, A. Ramani, H. Segur, J. Math. Phys. 21, 715 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  62. M.J. Ablowitz, A. Ramani, H. Segur, J. Math. Phys. 21, 1006 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  63. A. Ramani, B. Grammaticos, T. Bountis, Phys. Rep. 180, 159 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  64. A. Paliathanasis, P.G.L. Leach, IJGMMP 13, 1630009 (2016)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andronikos Paliathanasis.

Appendices

Lie symmetries

We briefly discuss the main definition and algorithm for the determination of Lie point symmetries. Consider the one-dimensional parameter point transformation

$$\begin{aligned} {\bar{x}}^{k}&=x^{k}+\epsilon \xi ^{i}\left( x^{k},u\right) , \end{aligned}$$
(29)
$$\begin{aligned} {\bar{\eta }}&=\eta +\epsilon \eta \left( x^{k},u\right) . \end{aligned}$$
(30)

with generator \(X=\xi ^{i}\left( x^{k},u\right) \partial _{i}+\eta \left( x^{k},u\right) \partial _{u}\), then the differential equation \({\mathbf {H}} \left( x^{k},u,u_{i},u_{ij},\ldots ,u_{i_{1}i_{2}\ldots i_{n}}\right) \) is invariant under the action of the one parameter point transformation if and only if

$$\begin{aligned} \lim _{\varepsilon \rightarrow 0}\frac{{{\bar{\mathbf {H}}}}\left( {\bar{x}}^{k}, {\bar{u}},{\bar{u}}_{i},{\bar{u}}_{ij},\ldots ,{\bar{u}}_{i_{1}i_{2}\ldots i_{n}}\right) - {\mathbf {H}}\left( x^{k},u,u_{i},u_{ij},\ldots ,u_{i_{1}i_{2}\ldots i_{n}}\right) }{ \varepsilon }=0, \end{aligned}$$

or equivalently, if there exists a function \(\lambda \) such that the following condition to be true [1, 2, 4]

$$\begin{aligned} X^{\left[ n\right] }{\mathbf {H}}-\lambda \mathbf {H=0} \end{aligned}$$
(31)

where \(X^{\left[ n\right] }\) is called the n-th prolongation/extension of X  in the jet-space defined as

$$\begin{aligned} X^{\left[ n\right] }= & {} X+\left( D_{i}\eta -u_{,k}D_{i}\xi ^{k}\right) \partial _{u_{i}}+\left( D_{i}\eta _{j}^{\left[ i\right] }-u_{jk}D_{i}\xi ^{k}\right) \partial _{u_{ij}}+\cdots \nonumber \\&+\left( D_{i}\eta _{i_{1}i_{2}\ldots i_{n-1}}^{\left[ i \right] }-u_{i_{1}i_{2}\ldots k}D_{i_{n}}\xi ^{k}\right) \partial _{u_{i_{1}i_{2}\ldots i_{n}}}. \end{aligned}$$
(32)

If X is a symmetry vector for the differential equation \({\mathbf {H}}\), then we can always find a coordinate transformation such that the symmetry vector to be written in the canonical coordinates, i.e., \(X=\partial _{x^{n}}\), where the differential equation is

$$\begin{aligned} \mathbf {H=H}\left( x^{\mu },u,u_{i},u_{ij},\ldots ,u_{i_{1}i_{2}\ldots i_{n}}\right) ,~\mu \ne n, \end{aligned}$$

clear from the last expression it follows \(\partial _{x^{\mu }}H=0\). The coordinate transformation which leads to the canonical coordinates is called similarity transformation and it is mainly applied for the reduction of the differential equation.

One-dimensional optimal system

Let a given differential equation admit as Lie symmetries the elements \( \left\{ X_{1},~X_{2},~\ldots ~X_{n}\right\} \) of the n-dimensional Lie algebra \(G_{n}\) with structure constants \(C_{jk}^{i}\). The two symmetry vectors Z,  W defined as

$$\begin{aligned} Z=\sum _{i=1}^{n}a_{i}X_{i},~W=\sum _{i=1}^{n}b_{i}X_{i},~\, a_{i},~b_{i}\text { are constants.} \end{aligned}$$
(33)

we shall say that are equivalent if and only if [3]

$$\begin{aligned} {\mathbf {W}}=\sum _{j=i}^{n}Ad\left( \exp \left( \epsilon _{i}X_{i}\right) \right) {\mathbf {Z}} \end{aligned}$$
(34)

or

$$\begin{aligned} W=cZ,~c=const\text { that is }b_{i}=ca_{i}\text {.} \end{aligned}$$
(35)

Operator \(Ad\left( \exp \left( \epsilon X_{i}\right) \right) X_{j}\) defined as

$$\begin{aligned} Ad\left( \exp \left( \epsilon X_{i}\right) \right) X_{j}=X_{j}-\epsilon \left[ X_{i},X_{j}\right] +\frac{1}{2}\epsilon ^{2}\left[ X_{i},\left[ X_{i},X_{j}\right] \right] +\cdots , \end{aligned}$$
(36)

is called the adjoint representation. 

The determination of all the one-dimensional subalgebras of \(G_{n}\) which are not related through the adjoint representation is necessary in order to perform a complete classification of all the possible similarity transformations, i.e., similarity solutions, for a given differential equation. This classification is known as the one-dimensional optimal system.

Singularity analysis

The development of the Painlevé test for the determination of integrability of a given equation or system of equations and its systematization been succinctly summarized by Ablowitz, Ramani and Segur in the so-called ARS algorithm [60,61,62]. The ARS algorithm is constructed by three basic steps, they are: (a) determine the leading-order term which describes the behavior of the solution near the singularity, (b) find the position of the resonances which shows the existence and the position of the integration constants and (c) write a Laurent expansion with leading-order term determined in the first step in order to perform the consistency test and the solution, for a review on the ARS algorithm and various applications we refer the reader in [63], while in [64] a discussion between the Lie’s approach and the singularity analysis is given.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paliathanasis, A. Periodic solutions from Lie symmetries for the generalized Chen–Lee–Liu equation. Eur. Phys. J. Plus 136, 934 (2021). https://doi.org/10.1140/epjp/s13360-021-01945-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01945-4

Navigation