Skip to main content
Log in

Dynamics of electrostatic waves in relativistic electron–positron-ion degenerate plasma

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Based on quantum hydrodynamics, a rigorous two-fluid model is applied to investigate the 3-dimensional propagation characteristics of linear and nonlinear electrostatic waves in a magnetized electron–positron-ion degenerate plasma. Chandrasekhar’s equation of state (EOS) is used for the degenerate relativistic electron and positron fluids while ions are treated as fixed and uniform in space. A dispersion relation for the electronic-scale waves is obtained using the linear mode analysis. A nonlinear analysis has been performed using a reductive perturbation technique, and the corresponding Zakharov–Kuznetsov (ZK) equation is derived for the evaluation of the nonlinear model. The small\(-k\) expansion perturbation method is employed to examine the instability criteria of the nonlinear waves obliquely propagating into the external magnetic field. The heading result of the present study is that the main characteristics of both linear and nonlinear modes are influenced clearly by the variations in concentrations of degenerate electrons and positrons. Also, the growth rate of the wave instability is found to increase as both the electron density and the positron concentration increase. The present results are helpful in understanding the characteristics and stability conditions of electrostatic waves in many ultra-dense systems generated in laboratory experiments of laser-irradiated solids and found in celestial environments, such as magnetar coronas, pulsar magnetospheres and black holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.H. Thoma, Eur. Phys. J. D 55, 271 (2009)

    Article  ADS  Google Scholar 

  2. D.A. Uzdensky, S. Rightley, Rep. Prog. Phys. 77, 036902 (2014)

    Article  ADS  Google Scholar 

  3. R. Duncan, C. Thompson, Astrophys. J. 392, L9 (1992)

    Article  ADS  Google Scholar 

  4. L. Nobili, R. Turolla, S. Zane, Adv. Space Res. 47, 1305 (2011)

    Article  ADS  Google Scholar 

  5. P. Goldreich, W.H. Julian, Astrophys. J. 157, 869 (1969)

    Article  ADS  Google Scholar 

  6. F.C. Michel, Rev. Mod. Phys. 54, 1 (1982)

    Article  ADS  Google Scholar 

  7. A.A. Zdziarski, A.P. Lightman, Astrophys. J. 294, L79 (1985)

    Article  ADS  Google Scholar 

  8. H.R. Miller, P.J. Witta, Active Galactic Nuclei (Springer-Verlag, Berlin, 1987)

    Google Scholar 

  9. R.D. Blandford, R.L. Znajek, Mon. Not. R. Astron. Soc. 179, 433 (1977)

    Article  ADS  Google Scholar 

  10. A.M. Beloborodov, C. Thompson, Astrophys. J. 657, 967 (2007)

    Article  ADS  Google Scholar 

  11. C. Thompson, Astrophys. J. 688, 499 (2008)

    Article  ADS  Google Scholar 

  12. A.M. Beloborodov, Astrophys. J. 762, 13 (2013)

    Article  ADS  Google Scholar 

  13. A.M. Beloborodov, Astrophys. J. 777, 114 (2013)

    Article  ADS  Google Scholar 

  14. E.P. Liang, S.C. Wilks, M. Tabak, Phys. Rev. Lett. 81, 4887 (1998)

    Article  ADS  Google Scholar 

  15. C.P. Ridgers, C.S. Brady, R. Duclous, J.G. Kirk, K. Bennett, T.D. Arber, A.P.L. Robinson, A.R. Bell, Phys. Rev. Lett. 108, 165006 (2012)

    Article  ADS  Google Scholar 

  16. P. Zhang, S.S. Bulanov, D. Seipt, A.V. Arefiev, A.G.R. Thomas, Phys. Plasmas 27, 050601 (2020)

    Article  ADS  Google Scholar 

  17. X.-L. Zhu, T.-P. Yu, Z.-M. Sheng, Y. Yin, I.C.E. Turcu, A. Pukhov, Nat. Commun. 7, 13686 (2016)

    Article  ADS  Google Scholar 

  18. D.D. Sorbo, D.R. Blackman, R. Capdessus, K. Small, C. Slade-Lowther, W. Luo, M.J. Duff, A.P.L. Robinson, P. McKenna, Z.-M. Sheng, J. Pasley, C.P. Ridgers, New J. Phys. 20, 033014 (2018)

    Article  Google Scholar 

  19. N. Crouseilles, P.A. Hervieux, G. Manfredi, Phys. Rev. B 78, 155412 (2008)

    Article  ADS  Google Scholar 

  20. L.K. Ang, T.J.T. Kwan, Y.Y. Lau, Phys. Rev. Lett. 91, 208303 (2003)

    Article  ADS  Google Scholar 

  21. C. Gardner, SIAM J. Appl. Math. 54, 409 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  22. W. Barnes, A. Dereux, T. Ebbesen, Nature 424, 824 (2003)

    Article  ADS  Google Scholar 

  23. E. Ozbay, Science 311, 189 (2006)

    Article  ADS  Google Scholar 

  24. I. Kuznetsova, J. Rafelski, Phys. Rev. D 85, 085014 (2012)

    Article  ADS  Google Scholar 

  25. G. Manfredi, Fields Inst. Commun. 46, 263 (2005)

    Google Scholar 

  26. S. Chandrasekhar, Philos. Mag. 11, 592 (1931)

    Article  Google Scholar 

  27. S. Chandrasekhar, Mon. Not. R. Astron. Soc. 95, 207 (1935)

    Article  ADS  Google Scholar 

  28. W. Anderson, Z. Physik 56, 851 (1929)

    Article  ADS  Google Scholar 

  29. E.C. Stoner, A.S. Eddington, Mon. Not. R. Astron. Soc. 92, 651 (1932). https://doi.org/10.1093/mnras/92.7.651

    Article  ADS  Google Scholar 

  30. E. Blackman, Nature 440, 148 (2006)

    Article  ADS  Google Scholar 

  31. M. Nauenberg, J. History Astro. 39, 297 (2008). https://doi.org/10.1177/002182860803900302

    Article  ADS  Google Scholar 

  32. P.K. Shukla, B. Eliasson, Phys. Usp. 53, 51 (2010)

    Article  ADS  Google Scholar 

  33. P.K. Shukla, B. Eliasson, Rev. Mod. Phys. 83, 885 (2011)

    Article  ADS  Google Scholar 

  34. F. Haas, I. Kourakis, Plasma Phys. Control. Fusion 57, 044006 (2015)

    Article  ADS  Google Scholar 

  35. E.E. Behery, F. Haas, I. Kourakis, Phys. Rev. E 93, 023206 (2016)

    Article  ADS  Google Scholar 

  36. V.E. Fortov, Phys. Usp. 52, 615 (2009)

    Article  ADS  Google Scholar 

  37. R. Silvotti, G. Fontaine, M. Pavlov et al., Astron. Astrophys. 525, A64 (2011)

    Article  Google Scholar 

  38. S.K. El-Labany, N.M. El-Siragy, W.F. El-Taibany, E.F. El-Shamy, E.E. Behery, Phys. Plasmas 17, 053705 (2010)

    Article  ADS  Google Scholar 

  39. A. Atteya, E.E. Behery, W.F. El-Taibany, Euro. Phys. J. Plus 132, 109 (2017)

    Article  Google Scholar 

  40. L.N. Tsintsadze, Astrophys. Space Sci. 191, 151 (1992)

    Article  ADS  Google Scholar 

  41. V.I. Berezhiani, S.M. Mahajan, Phys. Rev. Lett. 73, 1110 (1994)

    Article  ADS  Google Scholar 

  42. W.F. El-Taibany, A.A. Mamun, Phys. Rev. E 85, 026406 (2012)

    Article  ADS  Google Scholar 

  43. D.B. Melrose, M.E. Gedalin, Astrophys. J. 521, 351 (1999)

    Article  ADS  Google Scholar 

  44. G.I. Melikidze, J.A. Gil, A.D. Pataraya, Astrophys. J. 544, 1081 (2000)

    Article  ADS  Google Scholar 

  45. J.C. Wheeler, I. Yi, P. Höflich, L. Wang, Astrophys. J. 537, 810 (2000)

    Article  ADS  Google Scholar 

  46. G.I. Melikidze, D. Mitra, J. Gil, Astrophys. J. 794, 105 (2014)

    Article  ADS  Google Scholar 

  47. X. Li, J. Zrake, A.M. Beloborodov, Astrophys. J. 881, 13 (2019)

    Article  ADS  Google Scholar 

  48. H. Washimi, T. Taniuti, Phys. Rev. Lett. 17, 996 (1966)

    Article  ADS  Google Scholar 

  49. V.E. Zakharov, E.A. Kuznetsov, Sov. Phys. JETP 39, 285 (1974)

    ADS  Google Scholar 

  50. M.A. Allen, G. Rowlands, J. Plasma Phys. 50, 413 (1993)

    Article  ADS  Google Scholar 

  51. M.A. Allen, G. Rowlands, J. Plasma Phys. 53, 63 (1995)

    Article  ADS  Google Scholar 

  52. A.A. Mamun, Phys. Scr. 58, 505 (1998)

    Article  ADS  Google Scholar 

  53. S.K. El-Labany, W.F. El-Taibany, E.E. Behery, Phys. Rev. E 88, 023108 (2013)

    Article  ADS  Google Scholar 

  54. M.F. Bashir, E.E. Behery, W.F. El-Taibany, Phys. Plasmas 22, 062112 (2015)

    Article  ADS  Google Scholar 

  55. S.I. Popel, S.V. Vladimirov, P.K. Shukla, Phys. Plasmas 2, 716 (1995)

    Article  ADS  Google Scholar 

  56. J. Srinivas, S. Popel, P. Shukla, J. Plasma Phys. 55, 209 (1996)

    Article  ADS  Google Scholar 

  57. G. Lu, Y. Liu, Y. Wang, L. Stenflo, S. Popel, M. Yu, J. Plasma Phys. 76, 267 (2010)

    Article  ADS  Google Scholar 

  58. E.E. Behery, S.K. El-Labany, M.M. Selim, T.H. Khalil, M.A. Eissa, Phys. Scr. 96, 095606 (2021)

    Article  ADS  Google Scholar 

  59. G.P. Zank, R.G. Greaves, Phys. Rev. E 51, 6079 (1995)

    Article  ADS  Google Scholar 

  60. J. De Jonghe, R. Keppens, Phys. Plasmas 27, 122107 (2020). https://doi.org/10.1063/5.0029534

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by UAEU-UPAR project, contract no. G00002907

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Zaghloul.

Appendices

Appendix A: Coefficients of the dispersion relation 16

$$\begin{aligned} a_{3}&=-\left[ \frac{1}{H_{e0}}+\frac{\nu _{p}}{H_{p0}}+(F_{e}+F_{p})k^{2}+\left( \frac{1}{H_{e0}^{2}}+\frac{1}{H_{p0}^{2}} \right) \Omega ^{2}\right] , \end{aligned}$$
(A1)
$$\begin{aligned} a_{2}&=\frac{\Omega ^{4}}{H_{e0}^2 H_{p0}^2} + \left[ \frac{1}{H_{e0} H_{p0}^2}+\frac{\nu _{p}}{H_{e0}^2 H_{p0}} + \frac{F_{p}H_{e0}k^{2}+k_{\parallel }^{2}\left( F_{e}H_{e0}+\frac{1}{k^{2}} \right) }{H_{e0}^3} \right. \nonumber \\&\quad \left. + \frac{F_{e}H_{p0}k^{2}+k_{\parallel }^{2}\left( F_{p}H_{p0}+\frac{\nu _{p}}{k^{2}} \right) }{H_{p0}^3} \right] \Omega ^{2} \nonumber \\&\quad +\left[ \frac{F_{p}}{H_{e0}}+\frac{\nu _{p}F_{e}}{H_{p0}}+F_{e}F_{p}k^{2}\right] k^{2}, \end{aligned}$$
(A2)
$$\begin{aligned} a_{1}&=-\frac{k_{\parallel }^{2}\Omega ^{2}}{H_{e0}^{3}H_{p0}^{3}} \left[ \left( H_{e}^{2}+H_{p}^{2}\right) \left( F_{p}H_{p0} + \nu _{p}F_{e}H_{e0} + F_{e}F_{p} H_{e0}H_{p0}k^{2} \right) \right] \nonumber \\&+ \frac{k_{\parallel }^{2}\Omega ^{4}}{k^{2}H_{e0}^{2}H_{p0}^{2}} \left( \frac{1}{H_{e0}}\right. +\,\left. \frac{\nu _{p}}{H_{p0}}+(F_{e}+F_{p})k^{2}\right) , \end{aligned}$$
(A3)
$$\begin{aligned} a_{0}&= \frac{k_{\parallel }^{4}\Omega ^{4}}{H_{e0}^{3}H_{p0}^{3}k^{2}}\left( F_{p}H_{p0} + \nu _{p}F_{e}H_{e0} + F_{e}F_{p} H_{e0}H_{p0}k^{2} \right) . \end{aligned}$$
(A4)

In the above expressions, we have introduced the quantity \(F_{j}=\frac{\alpha _{j0}^{2}}{3\delta H_{j0}^{2}}+\frac{\mathcal {H}}{4 H_{j0}}k^{2}\); \(H_{j0}=\sqrt{\alpha _{j0}^{2}+1}\) . The square of the wavevector is defined as \(k^{2}=k_{x}^{2}+k_{y}^{2}+k_{z}^{2} \equiv k_{\perp }^{2}+k_{\parallel }^{2}\).

Appendix B: Equations from the next-order perturbation

Collecting terms of the next higher order of \(\epsilon \), we obtain the following set of equations

$$\begin{aligned}&-\lambda \frac{\partial n_{e2}}{\partial Z}+\frac{\partial u_{ez2}}{\partial Z} =-\frac{\partial n_{e1}}{\partial T}-\frac{\partial u_{ex2}}{\partial x}-\frac{\partial u_{ey2}}{\partial y}-\frac{\partial \left( n_{e1} u_{ez1}\right) }{\partial Z}+\delta \lambda u_{ez1}\frac{\partial u_{ez1}}{\partial Z}, \end{aligned}$$
(B1)
$$\begin{aligned}&-\lambda \frac{\partial n_{p2}}{\partial Z}+\frac{\partial u_{pz2}}{\partial Z} =-\frac{\partial n_{p1}}{\partial T}-\frac{\partial u_{px2}}{\partial x}-\frac{\partial u_{py2}}{\partial y}-\frac{\partial \left( n_{p1} u_{pz1}\right) }{\partial Z}+\delta \lambda u_{pz1}\frac{\partial u_{pz1}}{\partial Z}, \end{aligned}$$
(B2)
$$\begin{aligned}&-\frac{\alpha _{e0}^{2}}{3\delta H_{e0}^{2}}\frac{\partial n_{e2}}{\partial Z}+\lambda \frac{\partial u_{ez2}}{\partial Z}+H_{e0}^{-1}\frac{\partial \phi _{2}}{\partial Z} =-\frac{\lambda \alpha _{e0}^{2}}{3\delta H_{e0}^{2}}u_{ez1}\frac{\partial n_{e1}}{\partial Z}+\frac{\partial u_{ez1}}{\partial T} \nonumber \\&\qquad -\frac{\alpha _{e0}^{2}(1+3\alpha _{e0}^{2})}{9\delta H_{e0}^{4}}n_{e1}\frac{\partial n_{e1}}{\partial Z} + u_{ez1}\frac{\partial u_{ez1}}{\partial Z} + \frac{\alpha _{e0}^{2}}{3H_{e0}^{3}}n_{e1}\frac{\partial \phi _{1}}{\partial Z}-\frac{\mathcal {H}}{4H_{e0}}\frac{\partial }{\partial Z}\nabla ^{2} n_{e1}, \end{aligned}$$
(B3)
$$\begin{aligned}&-\frac{\alpha _{p0}^{2}}{3\delta H_{p0}^{2}}\frac{\partial n_{p2}}{\partial Z}+\lambda \frac{\partial u_{pz2}}{\partial Z} - H_{p0}^{-1}\frac{\partial \phi _{2}}{\partial Z} =-\frac{\lambda \alpha _{p0}^{2}}{3\delta H_{p0}^{2}}u_{pz1}\frac{\partial n_{p1}}{\partial Z} +\frac{\partial u_{pz1}}{\partial T} \nonumber \\&\qquad -\frac{\alpha _{p0}^{2}(1+3\alpha _{p0}^{2})}{9\delta H_{p0}^{4}}n_{p1}\frac{\partial n_{p1}}{\partial Z}+ u_{pz1}\frac{\partial u_{pz1}}{\partial Z} - \frac{\alpha _{p0}^{2}}{3H_{p0}^{3}}n_{p1}\frac{\partial \phi _{1}}{\partial Z}-\frac{\mathcal {H}}{4H_{p0}}\frac{\partial }{\partial Z}\nabla ^{2} n_{p1}, \end{aligned}$$
(B4)
$$\begin{aligned}&\frac{\partial n_{e2}}{\partial Z}-\nu _{p}\frac{\partial n_{p2}}{\partial Z} =\frac{\partial }{\partial Z}\nabla ^{2}\phi _{1} - \delta u_{ez1}\frac{\partial u_{ez1}}{\partial Z} + \nu _{p} \delta u_{pz1}\frac{\partial u_{pz1}}{\partial Z}, \end{aligned}$$
(B5)

where

$$\begin{aligned}&u_{ey1}=\frac{1}{\Omega H_{e0}}\left( \frac{\alpha _{e0}^{2}}{3\delta \lambda ^{2} H_{e0}^{2}-\alpha _{e0}^{2}} +1 \right) \frac{\partial \phi _{1}}{\partial X},\qquad u_{ex1}=\frac{-1}{\Omega H_{e0}}\left( \frac{\alpha _{e0}^{2}}{3\delta \lambda ^{2} H_{e0}^{2}-\alpha _{e0}^{2}} +1 \right) \frac{\partial \phi _{1}}{\partial Y},\nonumber \\&u_{py1}=\frac{1}{\Omega H_{p0}}\left( \frac{\alpha _{p0}^{2}}{3\delta \lambda ^{2} H_{p0}^{2}-\alpha _{p0}^{2}} +1 \right) \frac{\partial \phi _{1}}{\partial X},\qquad u_{px1}=\frac{-1}{\Omega H_{p0}}\left( \frac{\alpha _{p0}^{2}}{3\delta \lambda ^{2} H_{p0}^{2}-\alpha _{p0}^{2}} +1 \right) \frac{\partial \phi _{1}}{\partial Y},\nonumber \\&u_{ey2}=\frac{\lambda }{\Omega }\frac{\partial u_{ex1}}{\partial Z}, \quad \quad u_{ex2}=\frac{-\lambda }{\Omega }\frac{\partial u_{ey1}}{\partial Z}, \qquad \quad \ u_{py2}=\frac{-\lambda }{\Omega }\frac{\partial u_{px1}}{\partial Z}, \qquad \quad u_{px2}=\frac{\lambda }{\Omega }\frac{\partial u_{py1}}{\partial Z}. \end{aligned}$$
(B6)

Appendix C: Coefficients of ZK equation

$$\begin{aligned} A =&-\frac{9\delta ^{3}\lambda ^{4}H_{e0}^{2}}{\beta _{e0}^{2}}\left( H_{e0}+\frac{H_{p0}}{\nu _{p}} \right) +3\delta ^{2}\lambda ^{2}\left( \frac{9H_{e0}^{3}-H_{e0}\alpha _{e0}^{2}}{\beta _{e0}^{2}} + \frac{9H_{p0}^{3}-2H_{p0}\alpha _{p0}^{2}}{\beta _{p0}^{2}} + \frac{H_{e0}^{2}\alpha _{p0}^{2}}{\beta _{e0}^{2}H_{p0}\nu _{p}} \right) \nonumber \\&- \delta \left( \frac{\alpha _{e0}^{2} (3\alpha _{e0}^{2}+\beta _{e0}+1)}{H_{e0}\beta _{e0}^{2}} + \frac{\alpha _{p0}^{2} (3\alpha _{p0}^{2}+\beta _{p0}+1)}{H_{p0}\beta _{p0}^{2}} \right) , \end{aligned}$$
(C1)
$$\begin{aligned} B =&\frac{3}{4}\delta \mathcal {H}\left( \frac{H_{e0}}{\beta _{e0}} - \frac{H_{p0}}{\beta _{p0}}\right) + \frac{\beta _{p0}}{3\delta \nu _{p} H_{p0}}, \end{aligned}$$
(C2)
$$\begin{aligned} C =&B - \frac{\lambda ^{2}}{\Omega ^{2}}\left( \frac{\alpha _{e0}^{2}}{\beta _{e0}} - \frac{\alpha _{p0}^{2}}{\beta _{p0}} \right) , \qquad D = 6\delta \lambda \left( \frac{H_{p0}^{2}}{\beta _{p0}} - \frac{H_{e0}^{2}}{\beta _{e0}} \right) , \end{aligned}$$
(C3)

where \( \beta _{j0} = 3\delta \lambda ^{2} H_{j0}^{2} - \alpha _{j0}^{2} \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behery, E.E., Zaghloul, M.R. Dynamics of electrostatic waves in relativistic electron–positron-ion degenerate plasma. Eur. Phys. J. Plus 136, 942 (2021). https://doi.org/10.1140/epjp/s13360-021-01935-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01935-6

Navigation