Skip to main content
Log in

Laser-induced fluorescence as a non-invasive tool to monitor laser-assisted thinning of aged varnish layers on paintings: fundamental issues and critical thresholds

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A simple and straightforward methodology, based on laser-induced fluorescence (LIF) spectroscopy, is introduced as a real-time monitoring tool to follow laser ablation thinning of degraded varnish films in the context of paintings conservation. The proposed methodology defines a simple spectral indicator which monitors the removal of varnish and signals when a critical point has been reached beyond which interaction of the laser beam with the underlying paint layers might take place. The methodology has been developed upon a series of UV laser (KrF excimer laser, λ = 248 nm) ablation experiments, carried out on model, artificially aged, dammar films of varying thickness. It is based on measuring LIF emission spectra during cleaning, and the evolution of the process is quantified by means of the fluorescence ratio (R), which represents the fluorescence emission signal loss in ablated areas relative to the non-irradiated varnish. A graphical representation of R versus the number of ablative laser pulses, traces closely the thinning of the varnish layer defining clear-cut regimes indicative of partial, critical and complete varnish removal. In the critical regime an abrupt change of the value of R is observed and this is of great importance because it determines the limit above which further varnish removal may place the underlying paint-layers at risk. Moreover, the ratio of the varnish thickness over the optical penetration depth is significant for the discrimination of the different regimes for varnish thinning and the adjustment of the methodology for optically transparent or opaque films. All the experimental results are consistent with a simple theoretical description of R, based on the Beer-Lambert law.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. E.R. de la Rie, Stud. Conserv. (1988). https://doi.org/10.2307/1506303

    Article  Google Scholar 

  2. E.R. de la Rie, Anal. Chem. (1989). https://doi.org/10.1021/ac00196a003

    Article  Google Scholar 

  3. P. Dietemann, C. Higgitt, M. Kälin, M.J. Edelmann, R. Knockenmuss, R. Zenobi, J. Cult. Herit. (2009). https://doi.org/10.1016/j.culher.2008.04.007

    Article  Google Scholar 

  4. L. Shahinian, J. Cataract. Refract. Surg. (2002). https://doi.org/10.1016/S0886-3350(02)01444-X

    Article  Google Scholar 

  5. ΙG. Pallikaris, V.J. Katsanevaki, M.I. Kalyvianaki, I.I. Naoumidi, Curr. Opin. Ophthalmol. (2003). https://doi.org/10.1097/00055735-200308000-00007

    Article  Google Scholar 

  6. Μ Cooper, Laser Cleaning in Conservation (Butterworth-Heinemann, Oxford, UK, 1998)

    Google Scholar 

  7. C. Fotakis, D. Anglos, V. Zafiropulos, S. Georgiou, V. Tornari, Lasers in the Preservation of Cultural Heritage: Principles and Applications (Taylor and Francis, New York, 2006). https://doi.org/10.1201/9780367800857

    Book  Google Scholar 

  8. P. Pouli, E. Papakonstantinou, K. Frantzikinaki, A. Panou, G. Frantzi, C. Vasiliadis, C. Fotakis, Herit. Sci. (2016). https://doi.org/10.1186/s40494-016-0077-2

    Article  Google Scholar 

  9. M. Matteini, C. Lalli, I. Tosini, A. Giusti, S. Siano, J. Cult. Herit. (2003). https://doi.org/10.1016/S1296-2074(02)01190-1

    Article  Google Scholar 

  10. S. Georgiou, V. Zafiropulos, D. Anglos, C. Balas, V. Tornari, C. Fotakis, Appl. Surf. Sci. (1998). https://doi.org/10.1016/S0169-4332(97)00734-4

    Article  Google Scholar 

  11. S. Georgiou, D. Anglos, C. Fotakis, Contemp. Phys. (2008). https://doi.org/10.1080/00107510802038398

    Article  Google Scholar 

  12. P. Pouli, A. Selimis, S. Georgiou, C. Fotakis, Acc. Chem. Res. (2010). https://doi.org/10.1021/ar900224n

    Article  Google Scholar 

  13. M. Oujja, A. García, C. Romero, J.R. Vásquez de Aldana, P. Moreno, M. Castillejo, Phys. Chem. Chem. Phys. (2011). https://doi.org/10.1039/C0CP02147D

    Article  Google Scholar 

  14. D. Ciofini, M. Oujja, M.V. Cañamares, S. Siano, M. Castillejo, Microchem. J. (2016). https://doi.org/10.1016/j.microc.2015.10.031

    Article  Google Scholar 

  15. P. Moretti, M. Iwanicka, K. Melessanaki, E. Dimitroulaki, O. Kokkinaki, M. Daugherty, M. Sylwestrzak, P. Pouli, P. Targowski, K.J. van den Berg, L. Cartechini, C. Miliani, Herit. Sci. (2019). https://doi.org/10.1186/s40494-019-0284-8

    Article  Google Scholar 

  16. M. Lopez, X. Bai, C. Koch-Dandolo, A. Zanini, S. Serfaty, N. Wilkie-Chancellier, V. Detalle, Optics for Arts, Architecture, and Archaeology VII: International Society for Optics and Photonics, vol. 11058 (2019). https://doi.org/10.1117/12.2527437

  17. M. Castillejo, M. Martín, M. Oujja, D. Silva, R. Torres, A. Manousaki, V. Zafiropulos, O.F. van den Brink, R.M.A. Heeren, R. Teule, A. Silva, H. Gouveia, Anal. Chem. (2002). https://doi.org/10.1021/ac025778c

    Article  Google Scholar 

  18. P. Pouli, M. Oujja, M. Castillejo, Appl. Phys. A-Mater. Sci. Process. (2012). https://doi.org/10.1007/s00339-011-6696-2

    Article  Google Scholar 

  19. J. Striova, B. Salvadori, R. Fontana, A. Sansonetti, M. Barucci, E. Pampaloni, E. Marconi, L. Pezzati, M.P. Colombini, Stud. Conserv. (2015). https://doi.org/10.1179/0039363015Z.000000000213

    Article  Google Scholar 

  20. J. Striova, R. Fontana, M. Barucci, A. Felici, E. Marconi, E. Pampaloni, M. Raffaelli, C. Riminesi, Microchem. J. (2016). https://doi.org/10.1016/j.microc.2015.09.005

    Article  Google Scholar 

  21. H. Liang, M. Mari, C. Shing Cheung, S. Kogou, P. Johnson, G. Filippidis, Opt. Express (2017). https://doi.org/10.1364/OE.25.019640

    Article  Google Scholar 

  22. M. Iwanicka, P. Moretti, S. van Oudheusden, M. Sylwestrzak, L. Cartechini, K.J. van den Berg, P. Targowski, C. Miliani, Microchem. J. (2018). https://doi.org/10.1016/j.microc.2017.12.016

    Article  Google Scholar 

  23. K. Melessanaki, C. Stringari, C. Fotakis, D. Anglos, Laser Chem. (2006). https://doi.org/10.1155/2006/42709

    Article  Google Scholar 

  24. M. Góra, P. Targowski, A. Rycyk, J. Marczak, Laser Chem. (2006). https://doi.org/10.1155/2006/10647

    Article  Google Scholar 

  25. V. Papadakis, A. Loukaiti, P. Pouli, J. Cult. Herit. (2010). https://doi.org/10.1016/j.culher.2009.10.007

    Article  Google Scholar 

  26. G.J. Tserevelakis, P. Pouli, G. Zacharakis, Herit. Sci. (2020). https://doi.org/10.1186/s40494-020-00440-w

    Article  Google Scholar 

  27. F.J. Fortes, L.M. Cabalín, J.J. Laserna, Spectrochim. Acta Part B (2008). https://doi.org/10.1016/j.sab.2008.06.009

    Article  Google Scholar 

  28. M. Strlič, V. Šelih, J. Kolar, D. Kočar, B. Pihlar, R. Ostrowski, J. Marczak, M. Strzelec, M. Marinček, T. Vuorinen, L.S. Johansson, Appl. Phys. A. (2005). https://doi.org/10.1007/s00339-005-3268-3

    Article  Google Scholar 

  29. N.J. Dovinchi, J.C. Martin, J.H. Jett, M. Trkula, R.A. Keller, Anal. Chem. (1984). https://doi.org/10.1021/ac00267a010

    Article  Google Scholar 

  30. P.S. Andersson, S. Montán, S. Svanberg, Appl. Phys. B (1987). https://doi.org/10.1007/BF00693979

    Article  Google Scholar 

  31. U. Frank, Toxicol. Environ. Chem. Rev. (1978). https://doi.org/10.1080/02772247809356924

    Article  Google Scholar 

  32. D. Anglos, M. Solomidou, I. Zergioti, V. Zafiropulos, T.G. Papazoglou, C. Fotakis, Appl. Spectrosc. (1996). https://doi.org/10.1366/0003702963904863

    Article  Google Scholar 

  33. F. Gebert, M. Kraus, L. Fellner, A. Walter, C. Pargmann, K. Grünewald, F. Duschek, Eur. Phys. J. Plus (2018). https://doi.org/10.1140/epjp/i2018-12147-2

    Article  Google Scholar 

  34. O. Bukin, D. Proschenko, C. Alexey, D. Korovetskiy, I. Bukin, V. Yurchik, I. Sokolova, A. Nazezhkin, Photonics (2020). https://doi.org/10.3390/photonics7020036

    Article  Google Scholar 

  35. R. Srinivasan, B. Braren, R.W. Dreyfus, L. Hadel, D.E. Seeger, J. Opt. Soc. Am. B (1986). https://doi.org/10.1364/JOSAB.3.000785

    Article  Google Scholar 

  36. S. Georgiou, A. Koubenakis, Chem. Rev. (2003). https://doi.org/10.1021/cr010429o

    Article  Google Scholar 

  37. T. Lippert, J.T. Dickinson, Chem. Rev. (2003). https://doi.org/10.1021/cr010460q

    Article  Google Scholar 

  38. A. Romani, C. Clementi, C. Miliani, G. Favaro, Acc. Chem. Res. (2010). https://doi.org/10.1021/ar900291y

    Article  Google Scholar 

  39. T. Miyoshi, Jpn. J. Appl. Phys. (1987). https://doi.org/10.1143/JJAP.26.780

    Article  Google Scholar 

  40. A. Nevin, D. Comelli, I. Osticioli, L. Toniolo, G. Valentini, R. Cubeddu, Anal. Bioanal. Chem. (2009). https://doi.org/10.1007/s00216-009-3005-4

    Article  Google Scholar 

  41. W. Liu, X. Zhang, K. Liu, S. Zhang, Y.X. Duan, Chin. Sci. Bull. (2013). https://doi.org/10.1007/s11434-013-5826-y

    Article  Google Scholar 

  42. S. Montán, S. Svanberg, Appl. Phys. B (1985). https://doi.org/10.1007/BF00818050

    Article  Google Scholar 

  43. J.Z. Pan, P. Fang, X.X. Fang, T.T. Hu, J. Fang, Q. Fang, Sci. Rep. (2016). https://doi.org/10.1038/s41598-018-20058-0

    Article  Google Scholar 

  44. S. Babichenko, M. Bentahir, A.S. Piette, L. Poryvkina, O. Rebane, B. Smits, I. Sobolev, N. Soboleva, J.L. Gala, J. Biosens. Bioelectron. (2018). https://doi.org/10.4172/2155-6210.1000255

    Article  Google Scholar 

  45. S. Apostol, A.A. Viau, N. Tremblay, J.M. Briantais, S. Prasher, L.E. Paren, I. Moya, Can. J. Remote Sens. (2003). https://doi.org/10.5589/m02-076

    Article  Google Scholar 

  46. I. Gobernado-Mitre, A.C. Prieto, V. Zafiropulos, Y. Spetsidou, C. Fotakis, Appl. Spectrosc. (1997). https://doi.org/10.1366/0003702971941944

    Article  Google Scholar 

  47. D.F. Swinehart, J. Chem. Educ. (1962). https://doi.org/10.1021/ed039p333

    Article  Google Scholar 

  48. M. Born, E. Wolf, Beam propagation in an absorbing medium, in Principles of Optics 7th Ed. (Cambridge University Press, Cambridge, 2002)

  49. N.S. Cohen, M. Odlyha, R. Campana, G.M. Foster, Thermochim. Acta (2000). https://doi.org/10.1016/S0040-6031(00)00612-2

    Article  Google Scholar 

  50. J.S. Mills, J. Chem. Soc. (1956). https://doi.org/10.1039/JR9560002196

    Article  Google Scholar 

  51. R.H. Lafontaine, Stud. Conserv. (1979). https://doi.org/10.2307/1505919

    Article  Google Scholar 

  52. P. Pouli, I.A. Paun, G. Bounos, S. Georgiou, C. Fotakis, Appl. Surf. Sci. (2008). https://doi.org/10.1016/j.apsusc.2008.04.106

    Article  Google Scholar 

  53. W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer-Verlag, Berlin, Heidelberg, 1981), pp. 417–422

    Book  Google Scholar 

  54. R. Srinivasan, B. Braren, Chem. Rev. (1989). https://doi.org/10.1021/cr00096a003

    Article  Google Scholar 

  55. C. Theodorakopoulos, V. Zafiropulos, J. Cult. Herit. (2003). https://doi.org/10.1016/S1296-2074(02)01200-1

    Article  Google Scholar 

Download references

Acknowledgements

This research was undertaken within the IPERION-HS project (Integrated Platform for the European Research Infrastructure ON Heritage Science) funded by the European Union, H2020-INFRAIA-2019-1, under GA No. 871034. Experiments were conducted with the use of the research infrastructure FIXLAB-1.gr at IESL-FORTH, Heraklion, belonging to the Greek E-RIHS.gr developed and supported partially by the project "HELLAS-CH" (MIS 5002735) which is implemented under the "Action for Strengthening Research and Innovation Infrastructures", funded by the Operational Programme "Competitiveness, Entrepreneurship and Innovation" (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund). The authors would also like to thank Dr. G. Kenanakis for providing access to the 532nm Raman microspectrometer and Dr. V. Papadakis for his valuable help in the Raman spectra measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paraskevi Pouli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kokkinaki, O., Dimitroulaki, E., Melessanaki, K. et al. Laser-induced fluorescence as a non-invasive tool to monitor laser-assisted thinning of aged varnish layers on paintings: fundamental issues and critical thresholds. Eur. Phys. J. Plus 136, 938 (2021). https://doi.org/10.1140/epjp/s13360-021-01929-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01929-4

Navigation