Skip to main content
Log in

Transverse momentum and pseudo-rapidity density distributions of charged particles produced in pp and Au–Au collisions at \(\sqrt{{s}_{NN}}=200\)  GeV at RHIC

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we have reported the transverse momentum (\(p_{T}\)) spectra of averaged charged pions (\(\pi^{ \pm }\)), kaons (\(K^{ \pm }\)), protons and antiprotons in \(pp\) and most central 0–6% Au–Au collisions at \(\sqrt {s_{NN} }\) = 200 GeV. The simulation is done by models including EPOS-LHC, EPOS-1.99, and QGSJETII-04. The transverse momentum (\(p_{T}\)) distributions are plotted for \(\left( {\pi^{ + } + \pi^{ - } } \right)/2,\) \((K^{ + } + K^{ - } )/2\) and \(\left( {p + \overline{p}} \right)/2\) in the \(p_{T} \) range of 0 < \(p_{T}\) < 3 GeV/c, 0 < \(p_{T}\) < 2 GeV/c and 0.5 < \(p_{T}\) < 4.5 GeV/c, respectively. We have also plotted the pseudo-rapidity distributions of charged hadrons produced in pp and Au–Au collisions at \(\sqrt {s_{NN} }\) = 200 GeV. This analysis also includes the nuclear modification factor (\(R_{AA}\)) which is plotted as a function of \(p_{T}\) to study the effects of deconfined medium created in most central Au–Au collisions. Simulation data are compared with the experimental data. The simulated distributions are compared to the RHIC experimental data at \(\sqrt {s_{NN} }\) = 200 GeV for both collision systems in order to validate the above-mentioned simulation codes. Although it is observed that a good comparison exists between the models predictions and experimental data but none of them completely describe the experimental data over the entire \(p_{T}\) and η range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript will be available upon request by contacting with the corresponding author.]

References

  1. E.V. Shuryak et al., Phys. Rep. 61, 71 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  2. J. Adams et al., (STAR Collaboration) Nucl Phys. A 757, 102 (2005)

    Article  ADS  Google Scholar 

  3. L. Van Hove et al., Z. Phys. C Part. Fields 27, 135–144 (1985)

    Article  Google Scholar 

  4. S. Gupta et al., Science 332(6037), 1525–1528 (2011)

    Article  ADS  Google Scholar 

  5. N. Xu et al., (STAR Collaboration) Nucl. Phys. A 931, 1–12 (2014)

    Article  ADS  Google Scholar 

  6. K. Adcox et al., (PHENIX Collaboration) Nucl Phys. A 757, 184–283 (2005)

    Article  ADS  Google Scholar 

  7. J. Rafelski et al., Phys. Rev. Lett. 48, 1066 (1982)

    Article  ADS  Google Scholar 

  8. O. Barannikova, Braz. J. Phys. 37(2c), 851–854 (2007)

    Article  ADS  Google Scholar 

  9. X. Luo and N. Xu. Nucl. Sci. Tech., vol. 28, no. 8, article 112 (2017).

  10. M. R. Haque, et al., Adv. High Energy Phys., vol. 2017, Article ID 1248563, 15 pages, (2017).

  11. E. Laermann et al., Ann. Rev. Nucl. Part. Sci. 53, 163 (2003)

    Article  ADS  Google Scholar 

  12. J.D. Bjorken, Phys. Rev. D 27, 140 (1983)

    Article  ADS  Google Scholar 

  13. K. Adcox et al., (PHENIX Collaboration), Phys. Rev. Lett. 87, 052301 (2001)

    Article  ADS  Google Scholar 

  14. M. Gyulassy et al., Phys. Lett. B 243, 432 (1990)

    Article  ADS  Google Scholar 

  15. R. Baier et al., Phys. Lett. B 345, 277 (1995)

    Article  ADS  Google Scholar 

  16. T.M. Larsen et al., (Brahms Collaboration) Nucl. Phys. A 774, 541 (2006)

    Article  Google Scholar 

  17. X.N. Wang et al., Phys. Rev. Lett. 68, 1480 (1992)

    Article  ADS  Google Scholar 

  18. X.N. Wang, Phys. Rev. C 58, 2321 (1998)

    Article  ADS  Google Scholar 

  19. R. Baier et al., Rev. Nucl. Part. Sci. 50, 37 (2000)

    Article  ADS  Google Scholar 

  20. K. Adcox et al., Phys. Rev. Lett. 88, 242301 (2002)

    Article  ADS  Google Scholar 

  21. J. Adams et al., Phys. Rev. Lett. 92, 052302 (2004)

    Article  ADS  Google Scholar 

  22. R.J. Fries, Phy. Rev. C 68(4), 044902 (2003)

    Article  ADS  Google Scholar 

  23. S.J. Brodsky, Phys. Letts. B 668(2), 111–115 (2008)

    Article  ADS  Google Scholar 

  24. M. Gyulassy et al., Phys. Lett. 243, 432 (1990)

    Article  Google Scholar 

  25. M. Gyulassy, Phys. Letts. B 420(3), 583–614 (1994)

    Google Scholar 

  26. B. Back et al., Phy. Rev. Lett. 94(8), 082304 (2005)

    Article  ADS  Google Scholar 

  27. S.S. Adler et al., Phy. Rev. C 69(3), 034909 (2004)

    Article  ADS  Google Scholar 

  28. A. Adare et al., Phy. Rev. C 83(6), 064903 (2011)

    Article  ADS  Google Scholar 

  29. S. Basu et al., J. Phys. G: Nucl. Part. Phys. 48, 025103 (2021)

    Article  ADS  Google Scholar 

  30. M. Gazdzicki., EPJ ST 229 3507 (2020).

  31. J. Adam et al., Phys. Rev. C 95, 064606 (2017)

    Article  ADS  Google Scholar 

  32. K. Adcox et al., Phys. Rev. Lett. 88, 022301 (2002)

    Article  ADS  Google Scholar 

  33. K. Adcox et al., Phys. Lett. B 561, 82 (2003)

    Article  ADS  Google Scholar 

  34. S.S. Adler et al., (PHENIX Collaboration) Phys. Rev. C 69, 034909 (2004)

    ADS  Google Scholar 

  35. T. Pierog et al., Phys. Rev. C 92, 034906 (2015)

    Article  ADS  Google Scholar 

  36. P. K. Werner, How to relate particle physics and air shower: The EPOS model, in Proc. of the 31th ICRC (LODZ, 2009).

  37. A.B. Kaidalov et al., Sov. J. Nucl. Phys. 39, 979 (1984)

    Google Scholar 

  38. H.J. Drescher et al., Phys. Rep. 350, 93 (2001)

    Article  ADS  Google Scholar 

  39. K. Werner et al., Phys. Rev. C 74, 044902 (2006)

    Article  ADS  Google Scholar 

  40. M. Hladik et al., Phys. Rev. Lett. 86, 3506 (2001)

    Article  ADS  Google Scholar 

  41. H. Drescher et al., New J. Phys. 2(1), 31 (2000)

    Article  ADS  Google Scholar 

  42. V.N. Gribov, Sov. Phys. JETP 26, 414 (1968)

    ADS  Google Scholar 

  43. S. Ostapchenko, Phys. Rev. D 83, 014018 (2011)

    Article  ADS  Google Scholar 

  44. A. Adare et al., (PHENIX Collaboration) Phys. Rev. C 83, 064903 (2011)

    ADS  Google Scholar 

  45. B.B. Back et al., Phys. Rev. Lett. 94, 082304 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasir Ali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arif, A., Ali, Y. Transverse momentum and pseudo-rapidity density distributions of charged particles produced in pp and Au–Au collisions at \(\sqrt{{s}_{NN}}=200\)  GeV at RHIC. Eur. Phys. J. Plus 136, 951 (2021). https://doi.org/10.1140/epjp/s13360-021-01928-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01928-5

Navigation