Skip to main content

Advertisement

Log in

X-ray computed tomography and thermal neutron radiography for detection of low dense compounds inside pyro elements used in space applications

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Neutron radiography (NR) can be used for the detection and characterisation of explosives having different macroscopic attenuation cross sections. However, if the explosives have similar macroscopic cross sections to neutrons, characterising them is not possible. In this investigation, an attempt is made to distinguish various explosives based on the attenuation cross section of these compounds to neutrons. A correlation between the grey level achieved in neutron image of each explosive taken in a thin walled shell and their corresponding macroscopic attenuation cross section is carried out. An attempt is made to study the possibility of detection of some low dense compounds kept inside pyro metallic cases using cone beam X-ray 3D computed tomography. X-ray CT sliced images of samples filled with calcium carbonate and epoxy can be easily distinguished from empty samples. Samples were tested in NR and X-ray CT facility to compare the results. It is observed that low dense compounds of small volume positioned inside a bulk volume of SS metal of a pyro element used in this study are giving sufficient contrast that makes it detectable in CT cross-sectional image. The study points towards usage of X-ray CT as an alternative tool for detecting the presence of explosives in pyro devices wherever NR imaging cannot be carried out due to wall thickness constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G.N. Namboodiri, M.C.S. Kumar, M. Nallaperumal, S. Umasankar, G. Levin, Detection and characterization of low dense charges inside metallic devices used in space applications by neutron radiography. J. Nondestruct. Eval. (2020). https://doi.org/10.1007/s10921-020-0657-7

    Article  Google Scholar 

  2. ASTM E545 – 05 (2010) Standard Test Method for Determining Image Quality in Direct Thermal Neutron Radiographic Examination, https://doi.org/10.1520/E0545-14

  3. ASTM E1441–11 Standard Guide for Computed Tomography (CT) Imaging. ASTM International, West Conshohocken, PA, 2011, https://doi.org/10.1520/E1441-11

  4. L. De Chiffre, S. Carmignato, J.-P. Kruth, R. Schmitt, A. Weckenmann, Industrial applications of computed tomography. CIRP Ann. Manuf. Technol. 63, 655–677 (2014). https://doi.org/10.1016/j.cirp.2014.05.011

    Article  Google Scholar 

  5. S. Zheng, J. Vanderstelt, J.R. McDermid, J.R. Kish, Non-destructive investigation of aluminum alloy hemmed 1 joints using neutron radiography and x-ray computed tomography. NDT & E International (2017). https://doi.org/10.1016/j.ndteint.2017.06.004

    Article  Google Scholar 

  6. V. Sinha, A. Srivastava, H.K. Lee, A novel method for NDT applications using NXCT system at the Missouri University of Science & Technology. Nucl. Instrum. Methods Phys. Res. A 750, 43–55 (2014). https://doi.org/10.1016/j.nima.2014.03.002

    Article  ADS  Google Scholar 

  7. So. Kitazawa, Y. Abe, K. Satoh, Simulations of MeV energy computed tomography. NDT&E Int. 38, 275–282 (2005). https://doi.org/10.1016/j.ndteint.2004.09.004

    Article  Google Scholar 

  8. A.X. da Silva, V.R. Crispim, Use of thermal neutron tomography for the detection of drugs and explosives. Radiat. Phys. Chem. 61, 767–769 (2001)

    Article  ADS  Google Scholar 

  9. K. Wells, D.A. Bradley, A review of X-ray explosives detection techniques for checked baggage. Appl. Radiat. Isot. 70, 1729–1746 (2012). https://doi.org/10.1016/j.apradiso.2012.01.011

    Article  Google Scholar 

  10. F.J.O. Ferreira, V.R. Crispim, A.X. Silva, Detection of drugs and explosives using neutron computerized tomography and artificial intelligence techniques. Appl. Radiat. Isot. 68, 1012–1017 (2010). https://doi.org/10.1016/j.apradiso.2010.01.019

    Article  Google Scholar 

  11. G. Harding, X-ray scatter tomography for explosives detection. Radiat. Phys. Chem. 71, 869–881 (2004). https://doi.org/10.1016/j.radphyschem.2004.04.111

    Article  ADS  Google Scholar 

  12. Kh.E. Bagdasaryan, V.F. Batyaev, S.G. Belichenko, R.R. Bestaev, A.V. Gavryuchenkov, M.D. Karetnikov, Parameters of explosives detection through tagged neutron method. Nucl. Inst. Methods Phys. Res. A (2015). https://doi.org/10.1016/j.nima.2014.11.111

    Article  Google Scholar 

  13. S. Bishnoi, R.G. Thomas, A. Sarkar, P.S. Sarkar, A. Sinha, A. Saxena, S.C. Gadkari, Modeling of tagged neutron method for explosive detection using GEANT4. Nucl. Inst. Methods Phys. Res., A 923, 26–33 (2019). https://doi.org/10.1016/j.nima.2019.01.037

    Article  ADS  Google Scholar 

  14. T. Saroj Bishnoi, R.G. Patel, R. Thomas, P.S. Jilju, B.K. Sarkar, Nayak, Study of tagged neutron method with laboratory D-T neutron generator for explosive detection. Eur. Phys. J. Plus 135, 428 (2020). https://doi.org/10.1140/epjp/s13360-020-00402-y

    Article  Google Scholar 

  15. T. Gozani, D. Strellis, Advances in neutron based bulk explosive detection. Nucl. Inst. Methods Phys. Res. B 261, 311–315 (2007). https://doi.org/10.1016/j.nimb.2007.04.167

    Article  ADS  Google Scholar 

  16. Z. Ying, R. Naidu, C.R. Crawford, Dual energy computed tomography for explosive detection. J. Xray Sci. Technol. 14, 235–256 (2006)

    Google Scholar 

  17. S.K. Sharma, S. Jakhar, R. Shukla, A. Shyam, C.V.S. Rao, Explosive detection system using pulsed 14MeV neutron source. Fusion Eng. Des. 85, 1562–1564 (2010). https://doi.org/10.1016/j.fusengdes.2010.04.044

    Article  Google Scholar 

  18. A. DuPlessis, M. Meincken, T. Seifert, Quantitative determination of density and mass of polymeric materials using microfocus computed tomography. J. Nondestruct. Eval. 32(4), 413–417 (2013)

    Article  Google Scholar 

  19. E. Solórzano, S. Pardo-Alonso, N. Kardijlov, I. Manke, F. Wieder, F. García-Moreno, M.A. Rodriguez-Perez, Comparison between neutron tomography and X-ray tomography: a study on polymer foams. Nucl. Inst. Methods Phys. Res. B 324, 29–34 (2014). https://doi.org/10.1016/j.nimb.2013.11.023

    Article  ADS  Google Scholar 

  20. R. Lewandowski, L. Cao, D. Turkoglu, Noise evaluation of a digital neutron imaging device. Nucl. Instrum. Methods Phys. Res. A 674, 46–50 (2012). https://doi.org/10.1016/j.nima.2012.01.025

    Article  ADS  Google Scholar 

  21. K. Viswanathan, Neutron radiography in Indian space programme. Nucl. Instrum. Methods Phys. Res. A 424, 113–115 (1999)

    Article  ADS  Google Scholar 

  22. B. Soubelet, R. Adams, H.-M. Prasser, Computed tomography combined with a material decomposition technique using a compact deuterium-deuterium (D-D) fast neutron generator. Radiat. Phys. Chem. 181, 109296 (2021). https://doi.org/10.1016/j.radphyschem.2020.109296

    Article  Google Scholar 

  23. J.C. Domanus, Practical Neutron Radiography (Kluwer academic publishers, Dordrecht, 1992)

    Book  Google Scholar 

  24. Hassanein (2003) Correction methods for the quantitative evaluation of thermal neutron tomographys. PhD Thesis. https://doi.org/10.3929/ethz-a-005273682.

  25. M. Strobl, I. Manke, N. Kardjilov, A. Hilger, M. Dawson, J. Banhart, Advances in neutron radiography and tomography. J. Phys. D: Appl. Phys. 42, 243001 (2009). https://doi.org/10.1088/0022-3727/42/24/243001

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Girish N. Namboodiri or M. C. Santhosh Kumar.

Ethics declarations

Conflict of interests

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Namboodiri, G.N., Joseph, M., Kumar, M.C.S. et al. X-ray computed tomography and thermal neutron radiography for detection of low dense compounds inside pyro elements used in space applications. Eur. Phys. J. Plus 136, 945 (2021). https://doi.org/10.1140/epjp/s13360-021-01910-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01910-1

Navigation