Skip to main content
Log in

On the topological and crosscap entropies in non-oriented RCFTs

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We establish a relation between the boundary and the topological entropies for the conformal minimal models in some of the simplest models of the unitary A–A series. We show that in these models the boundary entropy is a difference of topological entropies. Furthermore, we define the crosscap entropy as the analog to the boundary entropy in non-oriented theories. The crosscap entropy is defined as the logarithm of the degeneracy of the ground state due to the presence of crosscaps, and it can be expressed in terms of the crosscap coefficients. This crosscap entropy has not an explicit relation to the topological entropy as the boundary entropy. However, we propose a new quantity, \(\hat{S} = \text {ln}P_{0i}\) defined in terms of the modular transformation P between the open and closed channel of the Möbius partition function. With this quantity, the crosscap entropy can be regarded as a difference of entropies, very similar to the boundary entropy. We also compute the left-right entanglement entropy (LREE) for crosscap states, and we express it in terms of \(\hat{S}\). An explicit example of the LREE of the crosscap state in Wess–Zumino–Witten is carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Kitaev, J. Preskill, Topological entanglement entropy. Phys. Rev. Lett. 96, 110404 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  2. M. Levin, X.-G. Wen, Detecting topological order in a ground state wave function. Phys. Rev. Lett. 96, 110405 (2006)

  3. I. Affleck, A.W. Ludwig, Universal noninteger “ground state degeneracy” in critical quantum systems. Phys. Rev. Lett. 67, 161–164 (1991)

  4. V. Balasubramanian, M.B. McDermott, M. Van Raamsdonk, Momentum-space entanglement and renormalization in quantum field theory. Phys. Rev. D 86, 045014 (2012)

  5. E.M. Brehm, I. Brunner, Entanglement entropy through conformal interfaces in the 2D Ising model. JHEP 09, 080 (2015)

    Article  MathSciNet  Google Scholar 

  6. M. Gutperle, J.D. Miller, Entanglement entropy at CFT junctions. Phys. Rev. D 95(10), 106008 (2017)

  7. L.A. Pando Zayas, N. Quiroz, Left-right entanglement entropy of boundary states. JHEP 01, 110 (2015)

    Article  ADS  Google Scholar 

  8. L.A. Pando Zayas, N. Quiroz, Left-right entanglement entropy of Dp-branes. JHEP 11, 023 (2016)

    Article  Google Scholar 

  9. D. Das, S. Datta, Universal features of left-right entanglement entropy. Phys. Rev. Lett 115(13), 131602 (2015)

  10. H.J. Schnitzer, Left-Right Entanglement Entropy, D-Branes, and Level-Rank Duality (2015), p. 5

  11. X.-L. Qi, H. Katsura, A.W.W. Ludwig, General relationship between the entanglement spectrum and the edge state spectrum of topological quantum states. Phys. Rev. Lett. 108 (2012)

  12. X. Wen, S. Matsuura, S. Ryu, Edge theory approach to topological entanglement entropy, mutual information and entanglement negativity in Chern-Simons theories. Phys. Rev. B 93(24), 245140 (2016)

  13. L.E. Ibanez, A.M. Uranga, String Theory and Particle Physics: An Introduction to String Phenomenology, vol. 2 (Cambridge University Press, Cambridge, 2012)

    MATH  Google Scholar 

  14. G.Y. Cho, C.-T. Hsieh, T. Morimoto, S. Ryu, Topological phases protected by reflection symmetry and crosscap states. Phys. Rev. B 91, 195142 (2015)

  15. A.P.O. Chan, J.C.Y. Teo, S. Ryu, Topological phases on non-orientable surfaces: twisting by parity symmetry. New J. Phys. 18(3), 035005 (2016)

  16. C.-T. Hsieh, O.M. Sule, G.Y. Cho, S. Ryu, R.G. Leigh, Symmetry-protected topological phases, generalized Laughlin argument and orientifolds. Phys. Rev B90(16), 165134 (2014)

  17. H.-H. Tu, Universal entropy of conformal critical theories on a Klein bottle. Phys. Rev. Lett. 119(26), 261603 (2017)

  18. W. Tang, L. Chen, W. Li, X. Xie, H.-H. Tu, L. Wang, Universal boundary entropies in conformal field theory: a quantum Monte Carlo study. Phys. Rev. B 96, 115136 (2017)

  19. J. Fuchs. Lectures on conformal field theory and Kac–Moody algebras. 1997. Lect. Notes Phys.498, 1 (1997)

  20. A. Recknagel, V. Schomerus, Boundary Conformal Field Theory and the Worldsheet Approach to D-Branes. Monographs on Mathematical Physics (Cambridge University Press, Cambridge, 2013)

    MATH  Google Scholar 

  21. R. Blumenhagen, E. Plauschinn, Introduction to conformal field theory. Lect. Notes Phys. 779, 1–256 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  22. I. Brunner, K. Hori, Notes on orientifolds of rational conformal field theories. JHEP 07, 023 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  23. N. Ishibashi, The boundary and crosscap states in conformal field theories. Mod. Phys. Lett. A 4(251). https://doi.org/10.1142/S0217732389000320

  24. D.C. Lewellen, Sewing constraints for conformal field theories on surfaces with boundaries. Nucl. Phys. B 372, 654–682 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  25. D. Fioravanti, G. Pradisi, A. Sagnotti, Sewing constraints and nonorientable open strings. Phys. Lett. B 321, 349–354 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  26. J.L. Cardy, Boundary Conditions, Fusion Rules and the Verlinde Formula. Nucl. Phys. B 324, 581–596 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  27. G. Pradisi, A. Sagnotti, Y.S. Stanev, Planar duality in SU(2) WZW models. Phys. Lett. B 354, 279–286 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  28. L. Huiszoon, A. Schellekens, N. Sousa, Klein bottles and simple currents. Phys. Lett. B 470, 95–102 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  29. R. Dijkgraaf, E.P. Verlinde, Modular Invariance and the Fusion Algebra. Nucl. Phys. B Proc. Suppl. 5, 87–97 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  30. G.W. Moore, N. Seiberg, Classical and quantum conformal field theory. Commun. Math. Phys. 123, 177 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  31. J.A. Harvey, S. Kachru, G.W. Moore, E. Silverstein, Tension is dimension. JHEP 03, 001 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  32. P. Di Francesco, P. Mathieu, D. Senechal, Conformal field theory. Graduate texts in contemporary physics (Springer, New York, 1997)

    Google Scholar 

  33. M. Bianchi, G. Pradisi, A. Sagnotti, Planar duality in the discrete series. Phys. Lett. B 273, 389–398 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  34. I. Runkel. Boundary structure constants for the A series Virasoro minimal models. Nucl. Phys. B. 549, 563–578 (1999) https://doi.org/10.1016/S0550-3213(99)00125-X [arXiv:hep-th/9811178 [hep-th]]

  35. W. Nahm, A. Recknagel, M. Terhoeven, Dilogarithm identities in conformal field theory. Mod. Phys. Lett. A 8, 1835–1848 (1993). https://doi.org/10.1142/S0217732393001562. [arXiv:hep-th/9211034 [hep-th]]

  36. M. Terhoeven. Dilogarithm identities, fusion rules and structure constants of CFTs. Mod. Phys. Lett. A 9, 133–142 (1994) https://doi.org/10.1142/S0217732394000149 [arXiv:hep-th/9307056 [hep-th]]

  37. M. Terhoeven. Rational conformal field theories, the dilogarithm and invariants of three manifolds. BONN-IR-95-15

  38. P. Dorey, I. Runkel, R. Tateo, G. Watts. g function flow in perturbed boundary conformal field theories. Nucl. Phys. B 578, 85–122 (2000) https://doi.org/10.1016/S0550-3213(99)00772-5 [arXiv:hep-th/9909216 [hep-th]]

  39. W. Nahm. Conformal field theory and torsion elements of the Bloch group. https://doi.org/10.1007/978-3-540-30308-4_2 [arXiv:hep-th/0404120 [hep-th]]

  40. Y. S. Stanev. Two-dimensional conformal field theory on open and unoriented surfaces. in Geometry and physics of branes. Proceedings, 4th SIGRAV Graduate School on Contemporary Relativity and Gravitational Physics and 2001 School on Algebraic Geometry and Physics, SAGP 2001, Como, Italy, May 7–11, 2001, pp. 39–85, 12 (2001)

  41. I. Tsiares. Study of conformal minimal models on non-orientable surfaces and its implications in three-dimensional quantum gravity. Master’s thesis, McGill University, Montréal, Québec, (2016)

  42. L. Chen, H.-X. Wang, L. Wang, W. Li, Conformal thermal tensor network and universal entropy on topological manifolds. Phys. Rev. B 96(17), 174429 (2017)

  43. G. Pradisi, A. Sagnotti, Y. Stanev, The Open descendants of nondiagonal SU(2) WZW models. Phys. Lett. B 356, 230–238 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  44. G. Pradisi, A. Sagnotti, Y. Stanev, Completeness conditions for boundary operators in 2-D conformal field theory. Phys. Lett. B 381, 97–104 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  45. J. Fuchs, L. Huiszoon, A. Schellekens, C. Schweigert, J. Walcher, Boundaries, crosscaps and simple currents. Phys. Lett. B 495, 427–434 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  46. P. Horava, Open strings from three-dimensions: Chern–Simons–Witten theory on orbifolds. J. Geom. Phys. 21, 1–33 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  47. L. Huiszoon, K. Schalm, A. Schellekens, Geometry of WZW orientifolds. Nucl. Phys. B 624, 219–252 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  48. I. Brunner, On orientifolds of WZW models and their relation to geometry. JHEP 01, 007 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  49. A. Maloney, S.F. Ross, Holography on Non-Orientable Surfaces. Class. Quant. Grav. 33(18), 185006 (2016)

  50. A. Dabholkar, P. Putrov, E. Witten. Duality and mock modularity. SciPost Phys. 9, 5, 072 (2020) https://doi.org/10.21468/SciPostPhys.9.5.072 [arXiv:2004.14387 [hep-th]]

  51. C. Itzykson, J. Drouffe, Statistical Field Theory, in Strong Coupling, Monte Carlo Methos, Conforma Field Theory, and Random Systems, vol. 2, (Cambridge Monographs on Mathematical Physics, CUP, 1989)

Download references

Acknowledgements

We are grateful to Leopoldo Pando-Zayas for reading the manuscript and for his useful comments about it. N. Quiroz would like to thank Cinvestav, IPN for hospitality. It is a pleasure to thank the anonymous referee for her (his) careful reading of the original manuscript and for all the suggestions provided, which helped us to improve our article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo García-Compeán.

Appendix

Appendix

The matrix S for minimal models in the A–A series is given in [32, 51]. The matrix P can be constructed by means of its definition in terms of the matrix S and T, although an simple expression for it has been given in [33]. For the Ising model, the crosscap coefficients are [24]

$$\begin{aligned} \Gamma _{0 0} = \sqrt{\frac{2 + \sqrt{2}}{2}} , \Gamma _{0 \varepsilon } = \sqrt{\frac{2-\sqrt{2}}{2}} , \Gamma _{0 \sigma }= 0 . \end{aligned}$$
(A.1)

In this case, there is only a crosscap corresponding to the parity symmetry \({{\mathscr {P}}}_0\)

$$\begin{aligned} |C_{{\mathscr {P}}_0}\rangle = \Gamma _{0 0} \vert C_0 \rangle \!\rangle + \Gamma _{0 \varepsilon } \vert C_\varepsilon \rangle \!\rangle , \end{aligned}$$
(A.2)

From (4.7), the LREE is

$$\begin{aligned} S_{|C_{{\mathscr {P}}_0}\rangle } =\frac{\pi \ell }{12 \varepsilon } - \frac{2+\sqrt{2}}{4} \text {ln} \Big (\frac{2 + \sqrt{2}}{2}\Big ) -\frac{2-\sqrt{2}}{2} \text {ln} \Big (\frac{2 - \sqrt{2}}{2}\Big ) \end{aligned}$$
(A.3)

For the Tricritical model, the primary fields the crosscap coefficients are

$$\begin{aligned} \Gamma _{00}&= \frac{ \sqrt{2 + \sqrt{2}}\, s_1}{\sqrt{s_2}} ,&\Gamma _{0 \epsilon }&= \frac{ \sqrt{2-\sqrt{2}} \,s_2}{\sqrt{s_1}} ,\nonumber \\ \Gamma _{0 \epsilon ^{\prime }}&= \frac{ \sqrt{2+\sqrt{2}} \,s_2}{\sqrt{s_1}} ,&\Gamma _{0 \epsilon ^{\prime \prime } }&= \frac{ \sqrt{2-\sqrt{2}} \,s_1}{\sqrt{s_2}} ,\nonumber \\ \Gamma _{0 \sigma }&=0 ,&\Gamma _{0 \sigma ^{\prime }}&=0 . \end{aligned}$$
(A.4)

These results agree with the quotients between them found using the sewing constraints in [41].

The crosscap state is

$$\begin{aligned} |C_{{\mathscr {P}}_0}\rangle = \Gamma _{00} \vert C_0 \rangle \!\rangle + \Gamma _{0 \epsilon } \vert C_\varepsilon \rangle \!\rangle + \Gamma _{0 \epsilon ^{\prime }}\vert C_{\varepsilon ^{\prime }} \rangle \!\rangle + \Gamma _{0 \epsilon ^{\prime \prime }}\vert C_{\varepsilon ^{\prime \prime }} \rangle \!\rangle , \end{aligned}$$
(A.5)

The corresponding LREE is given by

$$\begin{aligned} S_{|C_{{\mathscr {P}}_0}\rangle }= & {} \frac{7\pi \ell }{60 \,\varepsilon } - 4 \Big [s_2^2\, \text{ ln }\Big (\frac{s_2^2}{s_1}\Big ) - s_1^2\,\text{ ln }\Big (\frac{s_1^2}{s_2}\Big )\Big ]\nonumber \\&+\, (s_1^2+s_2^2) \Big [(2-\sqrt{2})\text{ ln }(2-\sqrt{2}) + (2+\sqrt{2})\text{ ln }(2+\sqrt{2}) \Big ] . \end{aligned}$$
(A.6)

For the Tetracritical model, we label the different conformal fields with \(i = 0, \ldots 9\) it the order given for the conformal weights in 3.1. The crosscap coefficients are:

$$\begin{aligned} \Gamma _{0 0}&= \frac{\sqrt{3}+1}{3^{1/4}}\frac{s_1}{\sqrt{s_2}} ,&\Gamma _{0 1}&= \frac{\sqrt{3}-1}{3^{1/4}}\frac{s_2}{\sqrt{s_1}} ,&\Gamma _{0 3}&= \frac{\sqrt{3}+1}{3^{1/4}}\frac{s_2}{\sqrt{s_1}} , \nonumber \\ \Gamma _{0 5}&= \frac{\sqrt{2}}{3^{1/4}}\frac{s_2}{\sqrt{s_1}} ,&\Gamma _{0 6}&= \frac{\sqrt{3}-1}{3^{1/4}}\frac{s_1}{\sqrt{s_2}}&\Gamma _{0 8}&= \frac{\sqrt{2}}{3^{1/4}}\frac{s_1}{\sqrt{s_2}} ,\nonumber \\ \end{aligned}$$
(A.7)

and \(\Gamma _{0 2}= \Gamma _{0 4} = \Gamma _{0 7}= \Gamma _{0 9}=0\).

The crosscap state and its corresponding LREE can be obtained also for the Tetracritical model. This can be performed in a straightforward way and will not be carried out here.

The matrix P for the \(SU(2)_k\) WZW model for k even is [48], then

$$\begin{aligned} P_{jl}&= \frac{2}{\sqrt{k+2}} \text {sin} \frac{\pi (2j+1)(2l+1)}{2(k+2)} , \quad \quad j+l \in {\mathbb {Z}} \end{aligned}$$
(A.8)
$$\begin{aligned} {{{\hat{\mathcal{D}}}}}&= \frac{1}{P_{00}}= \frac{\sqrt{k+2}}{2} \text {csc}\Big (\frac{\pi }{2(k+2)}\Big ) ,&{\mathcal{D}}&= \frac{1}{S_{00}}= \sqrt{\frac{k}{k+2}} \text {csc}\Big (\frac{\pi }{k+2}\Big ) \nonumber \\ {{\hat{d}}_j}&= \frac{P_{0j}}{P_{00}}= \text {csc}\Big (\frac{\pi }{2(k+2)}\Big ) \text {sin}\Big ( \frac{(2 j +1)\pi }{2(k+2)} \Big ) \end{aligned}$$
(A.9)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Compeán, H., Quiroz, N. On the topological and crosscap entropies in non-oriented RCFTs. Eur. Phys. J. Plus 136, 881 (2021). https://doi.org/10.1140/epjp/s13360-021-01878-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01878-y

Navigation