Skip to main content
Log in

Doppler broadening and squeezing-induced sub- and super-luminal group velocity in a driven qubit model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We investigate the absorption and dispersion spectra of the light pulse propagation through Doppler broadened driven qubit by exponentially weak decaying field in the presence of an off-resonant broadband squeezed vacuum (SV) reservoir. Combined effects of Doppler broadening and SV reservoir parameters induce enhanced sub- and super-luminal behavior of light through the qubit medium, as compared with the normal vacuum (NV) and thermal field (TF) reservoir cases. The SV phase, as a control parameter, induce enhanced sinusoidal (positive and negative) peaks of group index of the Doppler broadened medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availibility Statement

This manuscript has associated data in a data repository. [Authors’ comment: ...].

References

  1. Y. Kodriano, I. Schwartz, E. Poem, Y. Benny, R. Presman, T.A. Truong, P.M. Petroff, D. Gershoni, Phys. Rev. B. 85, 241304 (2012)

    Article  ADS  Google Scholar 

  2. N.V. Golubev, A.I. Kuleff, Phys. Rev. A 90, 035401 (2014)

    Article  ADS  Google Scholar 

  3. C. Lin, D. Sels, Y. Wang, Phys. Rev. A. 101, 022320 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  4. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge Univ. Press, Cambridge, 1997)

    Book  Google Scholar 

  5. L.V. Hau, S.E. Harris, Z. Dutton, C.H. Behroozi, Nature 6720, 594 (1999)

    Article  ADS  Google Scholar 

  6. M. Xiao, Y. Li, S. Jin, J. Gea-Banacloche, Phys. Rev. Lett. 74, 666 (1995)

    Article  ADS  Google Scholar 

  7. A. Joshi, S.S. Hassan, M. Xiao, Phys. Rev. A. 72, 055803 (2005)

    Article  ADS  Google Scholar 

  8. T.. N. Dey, G.. S. Agarwal, Phys. Rev. A 76, 015802 (2007)

    Article  ADS  Google Scholar 

  9. H. Ali, I. Ahmad, Laser Phys. 24, 025201 (2014)

    Article  ADS  Google Scholar 

  10. H. P. Yuen, J.H. Shapiro, IEEE Trans. Inf. ‘theory 24, 657 (1977)

  11. H. P. Yuen, J.H. Shapiro, IEEE Trans. Inf. ‘theory 26, 78 (1980)

  12. O. Kocharovskaya, Y. Rostovtsev, M.O. Scully, Rev. Lett. 86, 628 (2001)

    Article  ADS  Google Scholar 

  13. G.S. Agarwal, T.N. Dey, Phys. Rev. A. 68, 063816 (2003)

    Article  ADS  Google Scholar 

  14. G.S. Agarwal, T.N. Dey, Phys. Rev. A. 73, 043809 (2006)

    Article  ADS  Google Scholar 

  15. C.M. Caves, Phys. Rev. Lett 45, 75 (1980)

    Article  ADS  Google Scholar 

  16. E.S. Polzik, J. Carri, H.J. Kimble, Phys. Rev. Lett. 68, 3020 (1992)

    Article  ADS  Google Scholar 

  17. L.A. Wu, M. Xiao, H.J. Kimble, J. Opt. Soc. Am. B.4, 1465 (1987)

    Article  ADS  Google Scholar 

  18. R.. E. Slusher, L.. W. Hollberg, B. Yurke, J..C. Mertz, J..F. Valley, Phys. Rev. Lett 55, 2409 (1985)

    Article  ADS  Google Scholar 

  19. R.. M. Shelby, M.. D. Levenson, S.. H. Perlmutter, R.. G. DeVoe, D..F. Walls, Phys. Rev. Lett. 57, 691 (1986)

    Article  ADS  Google Scholar 

  20. C.W. Gardiner, Phys. Rev. Lett. 56, 1917 (1986)

    Article  ADS  Google Scholar 

  21. U. Akram, M.. R.. B. Wahiddin, Z. Ficek, Phys. Lett. A 238, 555 (1998)

    Article  Google Scholar 

  22. S.S. Hassan et al., J. Phys. B. 30, L777 (1997)

    Article  Google Scholar 

  23. S.S. Hassan et al., Eur. Phys. J. D. 26, 300 (2003)

    Article  ADS  Google Scholar 

  24. G.S. Agarwal et al., Phys. Rev. A 64, 053809 (2001)

    Article  ADS  Google Scholar 

  25. D. Bortman-Arbiv et al., Phys. Rev. A. 63, 043818 (2001)

    Article  ADS  Google Scholar 

  26. D. Han et al., Phys. Rev. Lett. A. 334, 243 (2005)

    Article  ADS  Google Scholar 

  27. Q. Zhang, G.. H. Qu, Y.. H. Tang, K. Jin, W.. L. Ji, Chin. Phys. B 21, 023201 (2012)

    Article  ADS  Google Scholar 

  28. O.M. Frege, M.M. Hassan, S.S. Hassan, Nonlinear Opt. Quantum Opt.: Concepts in Modern Opt. 52, 133 (2020)

    Google Scholar 

  29. C.W. Gardiner, M.J. Collett, Phys. Rev. A 31, 3761 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  30. P. Meystre, D.F. Walls (eds.), Nonclassical Effects in Quantum Optics (AIP, NY, 1991)

  31. D. F. Walls, G.J. Milburn, Quantum Optics, (Springer- Verlag, 1994)

  32. S.M. Barnett, P.M. Radmore, Methods in Theoretical Quantum Optics (Clarendon Press, Oxford, 1997)

    MATH  Google Scholar 

  33. S. S. Hassan, H. A. Batarfi, R. K. Bullough, J. Opt.B. Quantum Semi. Opt. 2, R 35 (2000)

  34. NPh. Georgiades, E.S. Polzik, K. Edamatsu, H.J. Kimble, A.S. Parkins, Phys. Rev. Lett. 75, 3426 (1995)

    Article  ADS  Google Scholar 

  35. A. S. Parkins, Phys. Rev. A 42, 4352? 6873 (1990)

  36. G. Yeoman, S.M. Barnett, J. Mod. Opt. 43, 2037 (1996)

    Article  ADS  Google Scholar 

  37. R. Tanas, Z. Ficek, A. Messikh, T. El-shahat, J. Mod. Opt. 45, 1859 (1998)

    Article  ADS  Google Scholar 

  38. S. Tesfa, J. Mod. Opt. 56, 105 (2009)

    Article  ADS  Google Scholar 

  39. B.R. Mollow, Phys. Rev. 188, 1969 (1969)

    Article  ADS  Google Scholar 

  40. G.P. Hildred, S.S. Hassan, R.R. Puri, R.K. Bullough, J. Phys. B: Atom. Mol. Phys. 16, 1703 (1983)

    Article  ADS  Google Scholar 

  41. S.S. Hassan, R.K. Bullough, G.P. Hildred, M.R. Wahiddin, J. Phys. B: At. Mol. Opt. Phys. 21, 981 (1988)

    Article  ADS  Google Scholar 

  42. H.J. Carmichael, A.S. Lane, D.F. Walls, Phys. Lett. 58, 2539 (1987)

    Article  Google Scholar 

  43. S.S. Hassan, O.M. Frege, N. Nayak, J. Opt. Soc. B 12, 1177 (1995)

    Article  ADS  Google Scholar 

  44. A. Joshi, S.S. Hassan, J. Phys. B: At. Mol. Opt. Phys. 30, L557 (1997)

    Article  ADS  Google Scholar 

  45. S..S. Hassan, A. Joshi, O.. M. Frege, Nonlinear Opt. Quantum Opt.: Concepts in Modern Opt. 30, 23 (2003)

    Google Scholar 

  46. H.A. Batarfi, R.A. Al-Harbi, R. Saunders, S.S. Hassan, Cand. J. Phys. 88, 529 (2010)

    Article  ADS  Google Scholar 

  47. Weisi Tan, Weihan Tan, D. Zhao, R. Liu, J. Opt. Soc. Am. B 10, 1610 (1993)

    Article  ADS  Google Scholar 

  48. S. S. Hassan, O. M. Frege, M. M. Hassan, Nonlinear Optics and Quantum Optics: Concepts in Modern Optics, (2022)-in the press

  49. S.S. Hassan, R.A. Alharbey, Nonlinear Opt. Quantum Opt.: Concepts in Modern Opt. 45, 171 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Alharbey.

Appendix A

Appendix A

The functions \(C^*_{+,z}(s=iD)\) appearing in (4) are listed in the general case of SV reservoir as follows [48],

$$\begin{aligned} C^*_+(s=iD)&=\left\{ \dfrac{1}{2r}\left[ \dfrac{r+iq}{s+\Gamma -r+i\delta }+ \dfrac{r-iq}{s+\Gamma +r+i\delta }\right] \right. \nonumber \\&\quad \left. \Omega ^2\left[ \dfrac{-1}{4r(s+\Gamma -r+i\delta )} \left( \dfrac{r+iq}{\Gamma +r+k^*} \left[ \dfrac{r+iq+2\eta }{\eta (\eta +r)}+\dfrac{\gamma M}{k^*(r+k^*)} \right] \right. \right. \right. \nonumber \\&~\left. \left. \left. +\dfrac{\gamma M^*}{\Gamma +r+k}\left[ \dfrac{r+iq+2k}{k(r+k)}+\dfrac{\gamma M}{\eta (\eta +r)} \right] \right) \nonumber \right. \right. \nonumber \\&~\left. \left. +\dfrac{1}{4r( s+\Gamma +r+i\delta )}\left( \dfrac{r-iq}{\Gamma -r+k^*}\left[ \dfrac{r-iq-2\eta }{\eta (\eta -r)} +\dfrac{\gamma M}{k^*(r-k^*)}\right] \right. \right. \right. \nonumber \\&~\left. \left. \left. + \dfrac{\gamma M^*}{\Gamma -r+k}\left[ \dfrac{r-iq-2k}{k(r-k)}+\dfrac{\gamma M}{\eta (\eta -r)}\right] \right) \right. \right. \nonumber \\&~+\left. \left. \dfrac{1}{4r\eta (r-\eta )(s+\Gamma -r+2\eta +i\delta )}\left( \dfrac{(r+iq)(r+iq-2\eta )}{\Gamma +r-k}-\dfrac{\gamma ^2|M |^2}{\Gamma +r-k^*} \right) \right. \right. \nonumber \\&~+\left. \left. \dfrac{1}{4r\eta (r+\eta )(s+\Gamma +r+2\eta +i\delta )} \left( \dfrac{(r-iq)(r-iq+2\eta )}{\Gamma -r-k}+\dfrac{\gamma ^2|M |^2}{\Gamma -r-k^*} \right) \right. \right. \nonumber \\&\quad \left. \left. 2\left( \dfrac{k-\Gamma +iq}{(\Gamma -k)^2-r^2}+ \dfrac{\gamma M}{(\Gamma -k^*)^2-r^2} \right) \right. \right. \nonumber \\&~\times \left. \left. \left( \dfrac{\Gamma +k^*-iq}{\left[ (\Gamma +k^*)^2 -r^2\right] (s+2\Gamma +k^*+i\delta ) } - \dfrac{\gamma M^*}{\left[ (\Gamma +k)^2 -r^2\right] (s+2\Gamma +k+i\delta ) } \right) \right. \right. \nonumber \\&\qquad \left. \left. +\dfrac{\gamma M}{4rk^*}\left( \dfrac{r+iq-2k^*}{(\Gamma +r-k^*)(r-k^*)(s+\Gamma +2k^*-r+i\delta )} \right. \right. \right. \nonumber \\&\qquad \left. \left. -\left( \dfrac{r-iq-2k^*}{(\Gamma -r-k^*)(r+k^*)(s+\Gamma +2k^*+r+i\delta )} \right) \right. \right. \nonumber \\&\qquad \left. \left. +\dfrac{\gamma M^*}{4rk}\left( \dfrac{r+iq}{(\Gamma +r-k)(r-k)(s+\Gamma +2k-r+i\delta )} \right. \right. \right. \nonumber \\&\qquad \left. \left. -\left( \dfrac{r-iq}{(\Gamma -r-k)(r+k)(s+\Gamma +2k+r+i\delta )} \right) \right] \right\} _{s=iD} \end{aligned}$$
(A.1)
$$\begin{aligned} C^*_z(s=iD)&=-2i\Omega \left\{ \dfrac{1}{2r(s+\Gamma +r+i\delta )} \left( \dfrac{r-iq}{\Gamma +k^*-r}-\dfrac{\gamma M^*}{\Gamma +k-r}\right) \right. \nonumber \\&\qquad \left. +\dfrac{1}{2r(s+\Gamma -r+i\delta )}\left( \dfrac{r+iq}{\Gamma +k^*+r}+\dfrac{\gamma M^*}{\Gamma +k+r} \right) \right. \nonumber \\&\qquad \left. -\dfrac{\Gamma +k^*-iq}{[(\Gamma +k^*)^2-r^2](s+2\Gamma +k^*+i\delta )}\right. \nonumber \\&\qquad \left. +\dfrac{\gamma M^*}{[(\Gamma +k)^2-r^2](s+2\Gamma +k+i\delta )}\right\} _{s=iD} \end{aligned}$$
(A.2)

where, \(k=\eta +\delta ,q=\delta +\Delta \), \( r=\sqrt{\gamma |M |^2-q^2}\). Consideration of Doppler broadening means the replacement \(q\equiv \delta +\Delta \rightarrow \delta +\Delta -kV,D\equiv \nu -\omega _L\rightarrow \nu -\omega _L+kV.\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, H., Alharbey, R.A., Hussain, A. et al. Doppler broadening and squeezing-induced sub- and super-luminal group velocity in a driven qubit model. Eur. Phys. J. Plus 136, 892 (2021). https://doi.org/10.1140/epjp/s13360-021-01870-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01870-6

Navigation