Skip to main content
Log in

State and parameter estimation of stochastic physical systems from uncertain and indirect measurements

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The approximate innovation methods have shown to be highly effective for the state and parameter estimation of a variety of continuous-time stochastic dynamical systems given a set of noisy discrete measurements. This article focuses on various issues of these inference methods not previously treated or discussed in deep such as the computation of the Fisher information matrix, the estimation of confidence intervals, and the evaluation of the fitting-innovation process as Gaussian white noise. These statistical tools play an essential role in practice as measures of goodness of fit of the model to the data and of the quality of the estimated parameters, which makes them suitable for designing of models and for optimal experimental design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G.E.P. Box, G.M. Jenkins, G.C. Reinsel, Time Series Analysis: Forecasting and Control, 3rd edn. (Prentice-Hall, Upper Saddle River, NJ, 1994)

    MATH  Google Scholar 

  2. C.P. Calderon, N.C. Harris, C.H. Kiang, D.D. Cox, Analyzing single-molecule manipulation experiments. J. Mol. Recognit. 22, 356–362 (2009)

    Article  Google Scholar 

  3. C. Chiarella, H. Hung, T.D. To, The volatility structure of the fixed income market under the HJM framework: a nonlinear filtering approach. Comput. Stat. Data Anal. 53, 2075–2088 (2009)

    Article  MathSciNet  Google Scholar 

  4. P. Deb, M. Sefton, The distribution of a Lagrange multiplier test of normality. Econ. Lett. 51, 123–130 (1996)

    Article  Google Scholar 

  5. J.P. Den Hartog, Mechanical Vibrations (Dover Publications Inc, New York, 1985)

    MATH  Google Scholar 

  6. R. Engle, Autoregressive conditional Heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 96, 893–920 (1988)

    Google Scholar 

  7. E. Fermi, P. Pasta, S. Ulam, M. Tsingou, Studies of the Nonlinear Problems. Los Alamos Scientific Lab., N. Mex. (1955)

  8. P.E. Gill, W. Murray, M.H. Wright, Practical Optimization (Academic Press, Cambridge, 1981)

    MATH  Google Scholar 

  9. M. Gitterman, The Noisy Oscillator (World Scientific, Singapore, 2005)

    Book  Google Scholar 

  10. Z. Gonzalez-Arenas, J.C. Jimenez, L. Lozada-Chang, R. Santana, Estimation of distribution algorithms for the computation of innovation estimators of diffusion processes. Math. Comput. Simul. 187, 449–467 (2021)

    Article  MathSciNet  Google Scholar 

  11. S.L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Fin. Stud. 6, 327–343 (1993)

    Article  MathSciNet  Google Scholar 

  12. C.M. Jarque, A.K. Bera, A test for normality of observations and regression residuals. Int. Stat. Rev. 1, 163–72 (1987)

    Article  MathSciNet  Google Scholar 

  13. J.C. Jimenez, Approximate linear minimum variance filters for continuous-discrete state space models: convergence and practical adaptive algorithms. IMA J. Math. Control Inform. 36, 341–378 (2019)

    Article  MathSciNet  Google Scholar 

  14. J.C. Jimenez, Bias reduction in the estimation of diffusion processes from discrete observations. IMA J. Math. Control. Inform. 37, 1468–1505 (2020)

    Article  MathSciNet  Google Scholar 

  15. J.C. Jimenez, R. Biscay, T. Ozaki, Inference methods for discretely observed continuous-time stochastic volatility models: a commented overview. Asian Pac. Financial Mark. 12, 109–141 (2006)

    Article  Google Scholar 

  16. J.C. Jimenez, T. Ozaki, An approximate innovation method for the estimation of diffusion processes from discrete data. J. Time Ser. Anal. 27, 77–97 (2006)

    Article  MathSciNet  Google Scholar 

  17. K.R. Koch, Parameter Estimation and Hypothesis Testing in Linear Models (Springer, New York, 1988)

    Book  Google Scholar 

  18. G.M. Ljung, G.E.P. Box, On a measure of a lack of fit in Time Series Models. Biometrika 65, 297–303 (1978)

    Article  Google Scholar 

  19. T. Kailath, Lectures on Wiener and Kalman Filtering (Springer, New York, 1981)

    Book  Google Scholar 

  20. P.E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations, 3rd edn. (Springer, Berlin, 1999)

    MATH  Google Scholar 

  21. A.I. McLeod, W.K. Li, Diagnostic checking ARMA time series models using squared-residual autocorrelations. J. Time Ser. Anal. 4, 269–273 (1983)

    Article  MathSciNet  Google Scholar 

  22. K.S. Miller, Complex Stochastic Processes: An Introduction to Theory and Application (Addison-Wesley Pub. Co., Boston, 1974)

    MATH  Google Scholar 

  23. J.N. Nielsen, M. Vestergaard, H. Madsen, Estimation in continuous-time stochastic volatility models using nonlinear filters. Int. J. Theor. Appl. Finance 3, 279–308 (2000)

    Article  MathSciNet  Google Scholar 

  24. T. Ozaki, in The Local Linearization Filter with Application to Nonlinear System Identification. ed. by H. Bozdogan (Kluwer Academic Publishers, 1994), pp. 217–240

  25. T. Ozaki, J.C. Jimenez, V. Haggan, Role of the likelihood function in the estimation of chaos models. J. Time Ser. Anal. 21, 363–387 (2000)

    Article  MathSciNet  Google Scholar 

  26. J.J. Riera, J. Watanabe, K. Iwata, N. Miura, E. Aubert, T. Ozaki, R. Kawashima, A state-space model of the hemodynamic approach: nonlinear filtering of BOLD signals. Neuroimage 21, 547–567 (2004)

    Article  Google Scholar 

  27. J.J. Riera, J.C. Jimenez, X. Wan, R. Kawashima, T. Ozaki, Nonlinear local electro-vascular coupling. Part II: from data to neural masses. Hum. Brain Mapp. 28, 335–354 (2007)

    Article  Google Scholar 

  28. J.J. Riera, X. Wan, J.C. Jimenez, R. Kawashima, Nonlinear local electro-vascular coupling. Part I: a theoretical model. Hum. Brain Map. 27, 896–914 (2006)

    Article  Google Scholar 

  29. Rikitake T. Oscillations of a system of disk dynamos, in Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 54, No. 1 (Cambridge University Press, 1958). pp. 89–105

  30. I. Shoji, A comparative study of maximum likelihood estimators for nonlinear dynamical systems. Int. J. Control 71, 391–404 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  31. P.A. Valdes, J.C. Jimenez, J. Riera, R. Biscay, T. Ozaki, Nonlinear EEG analysis based on a neural mass model. Biol. Cyb. 81, 415–424 (1999)

    Article  Google Scholar 

  32. R. Zamir, A proof of the Fisher information inequality via a data processing argument. IEEE Trans. Inf. Theory 44, 1246–1250 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Jimenez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jimenez, J.C., Yoshimoto, A. & Miwakeichi, F. State and parameter estimation of stochastic physical systems from uncertain and indirect measurements. Eur. Phys. J. Plus 136, 869 (2021). https://doi.org/10.1140/epjp/s13360-021-01859-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01859-1

Navigation