Skip to main content
Log in

Magnetic properties of a Fermi gas in a noncommutative phase space

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Motivated by the strong constraints to noncommutative quantum theories coming from Gamma Ray Bursts and the precision attained by SQUID devices in measuring magnetic fields, we study in this article the thermodynamic behaviour of a Fermi gas subject to the action of a background magnetic field, in two and three dimensional space with noncommutative coordinates and momenta. An explicit expression is obtained for the magnetization and magnetic susceptibility of the gas, both for Landau’s diamagnetism and Pauli’s paramagnetism. We are lead in this way to an upper bound \(\theta \lesssim (10 \,\text {Gev})^{-2}\) for the noncommutative parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Planck’s length is defined as \(\ell _P=\sqrt{\hbar G/c^3}\sim 10^{-30} \text {eV}^{-1}\), where \(\hbar \) is Planck’s reduced constant, G is the gravitational constant and c is the speed of light in vacuum.

  2. From now on we will use natural units where \(c=\hbar =1\).

  3. In the case \(\kappa =0\) this effective field equals the one computed using Seiberg-Witten map for NC gauge field theories [51].

  4. A detailed analysis of this assertion may be found in Appendix A.

  5. The factor two arises in Eq. (4.4) because of the two possible spin states.

  6. The explicit expression for the thermal wavelength is \(\uplambda =\sqrt{\frac{2\pi m_e}{b}}\).

  7. We have introduced \(k_B\), Boltzman’s constant.

  8. \(\uplambda _e\sim 2\,10^{-12}\, \text {m}\) is the electron Compton wavelength and \(\alpha \sim \frac{1}{137}\) is the fine-structure constant.

  9. Note that in order to keep \({\bar{n}}\) finite the relation \(z\exp ^{-\beta \omega _c(n+1/2)}<1\) must hold.

References

  1. R.J. Szabo, Quantum field theory on NC spaces. Phys. Rept. 378, 207 (2003). https://doi.org/10.1016/S0370-1573(03)00059-0. [arXiv:hep-th/0109162]]

  2. M.R. Douglas, N.A. Nekrasov, Noncommutative field theory. Rev. Mod. Phys. 73, 977–1029 (2001). https://doi.org/10.1103/RevModPhys.73.977. [arXiv:hep-th/0106048 [hep-th]]

  3. A. Connes, Noncommutative Geometry (Academic Press, London, 1994)

    MATH  Google Scholar 

  4. O.F. Dayi, A. Jellal, Landau diamagnetism in NC space and the nonextensive thermodynamics of Tsallis. Phys. Lett. A 287, 349 (2001). https://doi.org/10.1016/S0375-9601(01)00505-9. [arXiv:cond-mat/0103562]]

  5. J. Bellissard, A. van Elst, H. Schulz-Baldes, The non-commutative geometry of the quantum hall effect. J. Math. Phys. 35, 5373 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  6. H. Falomir, J. Gamboa, M. Loewe, M. Nieto, Graphene and non-Abelian quantization. J. Phys. A 45, 135308 (2012). https://doi.org/10.1088/1751-8113/45/13/135308. [arXiv:1109.6666 [math-ph]]

  7. D. C. Cabra, N. E. Grandi, Incidence of the boundary shape in the tunnelling exponent of electrons into fractional quantum Hall edges, cond-mat/0511674 cond-mat.mes-hall

  8. N. Seiberg, E. Witten, String theory and NC geometry. JHEP 9909, 032 (1999). https://doi.org/10.1088/1126-6708/1999/09/032. [arXiv:hep-th/9908142]

  9. E. Witten, Noncommutative geometry and string field theory. Nucl. Phys. B 268, 253 (1986). https://doi.org/10.1016/0550-3213(86)90155-0

    Article  ADS  MathSciNet  Google Scholar 

  10. I. Hinchliffe, N. Kersting, Y.L. Ma, Int. J. Mod. Phys. A 19, 179 (2004). https://doi.org/10.1142/S0217751X04017094. [arXiv:hep-ph/0205040]

  11. G. Amelino-Camelia, Quantum-Spacetime Phenomenology. Living Rev. Rel. 16, 5 (2013). https://doi.org/10.12942/lrr-2013-5. [arXiv:0806.0339 [gr-qc]]

  12. H. Falomir, S.A. Franchino Viñas, P.A.G. Pisani, F. Vega, Boundaries in the Moyal plane. JHEP 1312, 024 (2013). https://doi.org/10.1007/JHEP12(2013)024. [arXiv:1307.4464 [hep-th]]

  13. A. Ballesteros, G. Gubitosi, I. Gutierrez-Sagredo, F.J. Herranz, The \(\kappa \)-Newtonian and \(\kappa \)-Carrollian algebras and their noncommutative spacetimes. Phys. Lett. B 805, 135461 (2020). https://doi.org/10.1016/j.physletb.2020.135461. arXiv:2003.03921

  14. A. Ballesteros, I. Gutierrez-Sagredo, F.J. Herranz, The \(\kappa \)-(A)dS noncommutative spacetime. Phys. Lett. B 796, 93–101 (2019). https://doi.org/10.1016/j.physletb.2019.07.038. [arXiv:1905.12358 [math-ph]]

  15. S.A. Franchino-Viñas, S. Mignemi, Asymptotic freedom for \({\lambda {\phi ^{4}}}_{\star }\) QFT in Snyder-de Sitter space. Eur. Phys. J. C 80(5), 382 (2020). https://doi.org/10.1140/epjc/s10052-020-7918-6. [arXiv:1911.08921 [hep-th]]

  16. S. A. Franchino-Viñas and S. Mignemi, “Worldline Formalism in Snyder Spaces,” Phys. Rev. D 98(6) (2018), 065010 https://doi.org/10.1103/PhysRevD.98.065010. [arXiv:1806.11467 [hep-th]]

  17. S. Meljanac, S. Mignemi, J. Trampetic, J. You, Nonassociative Snyder \({\phi ^{4}}\) Quantum Field Theory. Phys. Rev. D 96(4), 045021 (2017). https://doi.org/10.1103/PhysRevD.96.045021. [arXiv:1703.10851 [hep-th]]

  18. S. Meljanac, S. Mignemi, Associative realizations of the extended Snyder model. Phys. Rev. D 102, 126011 (2020). https://doi.org/10.1103/PhysRevD.102.126011. [arXiv:2007.13498 [physics.gen-ph]]

  19. S. Meljanac, S. Mignemi, Unification of \(\kappa \)-Minkowski and extended Snyder spaces. Phys. Lett. B 814, 136117 (2021). https://doi.org/10.1016/j.physletb.2021.136117. [arXiv:2101.05275 [hep-th]]

  20. A. Das, S. Das, E.C. Vagenas, Discreteness of Space from GUP in Strong Gravitational Fields. Phys. Lett. B 809, 135772 (2020). https://doi.org/10.1016/j.physletb.2020.135772. [arXiv:2006.05781 [gr-qc]]

  21. B. Carr, H. Mentzer, J. Mureika and P. Nicolini, “Self-complete and GUP-Modified Charged and Spinning Black Holes,” Eur. Phys. J. C 80 (2020) no.12, 1166 https://doi.org/10.1140/epjc/s10052-020-08706-0. [arXiv:2006.04892 [gr-qc]]

  22. M.A. Anacleto, F.A. Brito, J.A.V. Campos, E. Passos, Quantum-corrected scattering and absorption of a Schwarzschild black hole with GUP. Phys. Lett. B 810, 135830 (2020). https://doi.org/10.1016/j.physletb.2020.135830. [arXiv:2003.13464 [gr-qc]]

  23. L. Buoninfante, G. Lambiase, G. G. Luciano, L. Petruzziello, “Phenomenology of GUP stars,” Eur. Phys. J. C 80(9) (2020), 853 https://doi.org/10.1140/epjc/s10052-020-08436-3. [arXiv:2001.05825 [gr-qc]]

  24. K. P. Gnatenko, V. M. Tkachuk, “Kinetic energy properties and weak equivalence principle in a space with generalized uncertainty principle,” Mod. Phys. Lett. A 35(13) (2020), 2050096 https://doi.org/10.1142/S0217732320500960. [arXiv:1907.07057 [gr-qc]]

  25. V. Vasileiou, J. Granot, T. Piran, G. Amelino-Camelia, A Planck-scale limit on spacetime fuzziness and stochastic Lorentz invariance violation. Nature Phys. 11(4), 344 (2015). https://doi.org/10.1038/nphys3270

    Article  ADS  Google Scholar 

  26. A. Borowiec, K.S. Gupta, S. Meljanac, A. Pachol, Constarints on the quantum gravity scale from kappa - Minkowski spacetime. Europhys. Lett. 92, 20006 (2010). https://doi.org/10.1209/0295-5075/92/20006. [arXiv:0912.3299 [hep-th]]

  27. P. Castorina, A. Iorio, D. Zappala, Violation of Lorentz invariance and dynamical effects in high energy gamma rays. Nucl. Phys. Proc. Suppl. 136, 333 (2004). https://doi.org/10.1016/j.nuclphysbps.2004.10.012 [arXiv:hep-ph/0407363]

  28. G. Amelino-Camelia, G. DAmico, G. Rosati, N. Loret, In-vacuo-dispersion features for GRB neutrinos and photons. Nature Astron. 1, 0139 (2017). https://doi.org/10.1038/s41550-017-0139. [arXiv:1612.02765 [astro-ph.HE]]

  29. G. Amelino-Camelia, L. Barcaroli, G. D’Amico, N. Loret, G. Rosati, “IceCube and GRB neutrinos propagating in quantum spacetime,” Phys. Lett. B 761, 318-325 (2016) https://doi.org/10.1016/j.physletb.2016.07.075. [arXiv:1605.00496 [gr-qc]]

  30. R. Horvat, J. Trampetic, Constraining spacetime noncommutativity with primordial nucleosynthesis. Phys. Rev. D 79, 087701 (2009). https://doi.org/10.1103/PhysRevD.79.087701. arXiv:0901.4253 [hep-ph]]

  31. S.M. Carroll, J.A. Harvey, V.A. Kostelecky, C.D. Lane, T. Okamoto, Noncommutative field theory and Lorentz violation. Phys. Rev. Lett. 87, 141601 (2001). https://doi.org/10.1103/PhysRevLett.87.141601. [arXiv:hep-th/0105082]

  32. M. Chaichian, M.M. Sheikh-Jabbari, A. Tureanu, Hydrogen atom spectrum and the Lamb shift in NC QED. Phys. Rev. Lett. 86, 2716 (2001). https://doi.org/10.1103/PhysRevLett.86.2716. [arXiv:hep-th/0010175]

  33. H. Falomir, J. Gamboa, M. Loewe, F. Mendez, J.C. Rojas, Testing spatial noncommutativity via the Aharonov-Bohm effect. Phys. Rev. D 66, 045018 (2002). https://doi.org/10.1103/PhysRevD.66.045018. [arXiv:hep-th/0203260]

  34. K. Ma, J. H. Wang, H. X. Yang, “Probing the noncommutative effects of phase space in the time-dependent Aharonov-Bohm effect,” [arXiv:1605.03902 [hep-ph]]

  35. J. Gamboa, F. Mendez, Bose-Einstein condensation theory for any integer spin: Approach based in NC quantum mechanics, [arXiv:0912.2645 [hep-th]]

  36. J. Granot, T. Piran, O. Bromberg, J. L. Racusin, F. Daigne, Gamma-Ray Bursts as Sources of Strong Magnetic Fields. Space Sci. Rev. 191(1-4), 471-518 (2015) https://doi.org/10.1007/s11214-015-0191-6. [arXiv:1507.08671 [astro-ph.HE]]

  37. J.R. Johansson, G. Johansson, C.M. Wilson, F. Nori, Dynamical Casimir Effect in a Superconducting Coplanar Waveguide. Phys. Rev. Lett. 103, 147003 (2009). https://doi.org/10.1103/PhysRevLett.103.147003. [arXiv:0906.3127 [cond-mat.supr-con]]

  38. C.W.F. Everitt, B. Muhlfelder, D.B. DeBra, B.W. Parkinson, J.P. Turneaure, A.S. Silbergleit, E.B. Acworth, M. Adams, R. Adler, W.J. Bencze, et al. The Gravity Probe B test of general relativity. Class. Quant. Grav. 32(22), 224001 (2015) https://doi.org/10.1088/0264-9381/32/22/224001

  39. F. Delduc, Q. Duret, F. Gieres, M. Lefrancois, Magnetic fields in NC quantum mechanics. J. Phys. Ser. 103, 012020 (2008). https://doi.org/10.1088/1742-6596/103/1/012020. [arXiv:0710.2239 [quant-ph]]

  40. J. Gamboa, M. Loewe, F. Mendez, J.C. Rojas, The Landau problem and noncommutative quantum mechanics. Mod. Phys. Lett. A 16, 2075 (2001). https://doi.org/10.1142/S0217732301005345. [arXiv:hep-th/0104224]

  41. S. Bellucci, Constant magnetic field and 2-D NC inverted oscillator. Phys. Rev. D 67, 105014 (2003). https://doi.org/10.1103/PhysRevD.67.105014. [arXiv:hep-th/0301227]

  42. K. Nouicer, Effect of minimal lengths on electron magnetism. J. Phys. A 40, 2125 (2007). https://doi.org/10.1088/1751-8113/40/9/017

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. A. Jellal, Orbital magnetism of two-dimension NC confined system. J. Phys. A 34, 10159 (2001). https://doi.org/10.1088/0305-4470/34/47/319. [arXiv:hep-th/0105303]

  44. B.Q. Wang, Z.W. Long, C.Y. Long, S.R. Wu, Solution of the spin-one DKP oscillator under an external magnetic field in noncommutative space with minimal length. Chin. Phys. B 27(1), 010301 (2018). https://doi.org/10.1088/1674-1056/27/1/010301

    Article  ADS  Google Scholar 

  45. A. Halder, S. Gangopadhyay, Thermodynamics of a charged particle in a noncommutative plane in a background magnetic field. Int. J. Theor. Phys. 56(6), 1831-1844 (2017) https://doi.org/10.1007/s10773-017-3328-4. [arXiv:1609.06580 [hep-th]]

  46. F.G. Scholtz, J. Govaerts, Thermodynamics of a non-commutative fermion gas. J. Phys. A 41, 505003 (2008) https://doi.org/10.1088/1751-8113/41/50/505003. [arXiv:0810.3064 hep-th]]

  47. F.G. Scholtz, J.N. Kriel, H.W. Groenewald, Thermodynamics of Fermi gases in three dimensional fuzzy space, Phys. Rev. D 92(12), 125013 (2015) https://doi.org/10.1103/PhysRevD.92.125013. [arXiv:1508.05799 [hep-th]]

  48. S.A. Franchino-Viñas, P. Pisani, Thermodynamics in the NC disc, Eur. Phys. J. Plus 133(10), 421 (2018) https://doi.org/10.1140/epjp/i2018-12207-7. [arXiv:1803.05821 [hep-th]]

  49. H. Falomir, P.A.G. Pisani, F. Vega, D. Cárcamo, F. Méndez, M. Loewe, On the algebraic structure of rotationally invariant two-dimensional Hamiltonians on the NC phase space. J. Phys. A 49(6), 055202 (2016). https://doi.org/10.1088/1751-8113/49/5/055202. [arXiv:1507.06932 [math-ph]]

  50. V.P. Nair, A.P. Polychronakos, Quantum mechanics on the NC plane and sphere. Phys. Lett. B 505, 267 (2001). https://doi.org/10.1016/S0370-2693(01)00339-2. [arXiv:hep-th/0011172]

  51. F.G. Scholtz, B. Chakraborty, S. Gangopadhyay, A.G. Hazra, Dual families of non-commutative quantum systems. Phys. Rev. D 71, 085005 (2005). https://doi.org/10.1103/PhysRevD.71.085005. [arXiv:hep-th/0502143]

  52. W. de Haas, P.M. van Alphen, The dependence of the susceptibility of Diamagnetic metals upon the fields, Koninklitje Akademie van Wetenschappen Amsterdam. Proceedings of the Section of Sciences 33, 1106–1118 (Communication 212a (Physical Laboratory, Leiden), 1930)

  53. R.E. Peierls, Zur theorie des Diamagnetismus von Leitungselektronen II. Z. Phys. 81, 186 (1933)

    Article  ADS  Google Scholar 

  54. J.C. Mester, J.M. Lockhart, B. Muhlfelder, D.O. Murray, M.A. Taber, Ultralow magnetic fields and Gravity Probe B gyroscope readout. Adv. Space Res. 25, 1185 (2000). https://doi.org/10.1016/S0273-1177(99)00984-9

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors express immense gratitude to H. Falomir for making important comments that allowed them to improve the present work. S.A.F. is grateful to G. Gori and the Institut für Theoretische Physik, Heidelberg, for their kind hospitality. The authors acknowledge support from UNLP through the grant 11/X615. S.A.F. acknowledges support by UNLP, under project grant X909 and “Subsidio a Jóvenes Investigadores 2019”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Vega.

Appendices

The fugacity in the \(\beta \sim 0\) regime

In the high temperature regime –i.e. in the inverse temperature \(\beta \sim 0\) regime– we may obtain the asymptotic expansion of the fugacity z in terms of \(\beta \) and the density of particles \({\bar{n}}\). As a first step, we compute \({\bar{n}}\) as the derivative of the partition function with respect to \(\mu _c\) as \(\beta \) remains constant:

$$\begin{aligned} {\bar{n}}&= \rho \,z\sum _{n=0}^{\infty } \frac{e^{-\beta \omega _c\left( n+\frac{1}{2}\right) }}{1+z\,e^{-\beta \omega _c\left( n+\frac{1}{2}\right) }}. \end{aligned}$$
(A.1)

From this expression it can be seen that as the temperature becomes larger z must tend to zero in order for \({\bar{n}}\) to remain finite. Using this fact, one may expand the denominatorFootnote 9 in (A.1) and then recast the density of particles by performing a resummation:

$$\begin{aligned} {\bar{n}}&=- \rho \,\sum _{r=1}^{\infty }\ \frac{\left( -ze^{-\beta \omega _c/2}\right) ^{r}}{1-{e^{-\beta \omega _c r}}}. \end{aligned}$$
(A.2)

Now, it is known that every series like (A.2) may be inverted by using the Lagrange inversion theorem. The final result is

$$\begin{aligned} z=-e^{\beta \omega _c/2}\sum _{n=1}^{\infty } \frac{1}{n!} \left( \sum _{k=1}^{n-1}\frac{(-1)^{k} (n+k-1)!}{(n-1)!} B_{n-1,k}({\hat{f}}_1,\cdots ,{\hat{f}}_{n-k}) \right) \left( -\frac{f\,{\bar{n}}}{\rho } \right) ^n, \end{aligned}$$
(A.3)

where we have made use of the Bell polynomials \(B_{n,k}\), and defined the following functions of \(\beta \):

$$\begin{aligned} \begin{aligned}{\hat{f}}_k:&=\frac{1-e^{-\beta \omega _c}}{(k+1)(1-e^{-\beta \omega _c(k+1)})},\\ f:&= 1-e^{-\beta \omega _c}. \end{aligned} \end{aligned}$$
(A.4)

It should be noticed that expression (A.3) is well-behaved in the limit \(\beta \rightarrow 0\) and provides us with the following expansion for the fugacity z:

$$\begin{aligned} z \sim \frac{{\bar{n}}\beta \omega _c}{\rho } +O(\beta ^2). \end{aligned}$$
(A.5)

On using Euler-Maclaurin formula to compute Pauli’s paramagnetism in the low temperature regime

In this App. we will show how to obtain an analytical result for the partition function considered in Sect. 4 for the Pauli paramagnetism’ problem,

$$\begin{aligned} -\beta \phi =\rho \sum _{s=\pm 1}\sum _{n=0}^{\infty } \log (1+e^{-\beta \omega _c n+\alpha _s}), \end{aligned}$$
(B.1)

where the parameter \(\alpha _s\) has been defined in Eq. (4.2).

For a while we will forget about the index s which labels the spin up and down components—if we just focus on the sum over the n index we can write according to Euler-Maclaurin Formula

$$\begin{aligned} -\frac{\beta \phi }{\rho }&= \int _0^{\infty }dx \log (1+e^{-\beta \omega _c x+\alpha _s}) + \frac{1}{2} \log (1+e^ {\alpha _s}) \nonumber \\&\quad +\frac{B_2}{2} \frac{\beta \omega _c}{1+e^{-\alpha _s}}-\frac{B_4}{4!}\frac{(\beta \omega _c)^3}{4}\sinh \left( \frac{\alpha _s}{2}\right) \text {sech}^3\left( \frac{\alpha _s}{2}\right) \nonumber \\&\quad +\frac{1}{2}\sum _{k=1}^{\infty }\int _0^{\infty } dt\frac{\cos (2\pi k\,t)}{(2\pi k)^4} \frac{(\beta \omega _c)^4}{8}\frac{\sinh (\beta \omega _c t-\alpha _s)-2}{\cosh ^4\left( \frac{\alpha _s-\beta \omega _c t}{2}\right) }, \end{aligned}$$
(B.2)

where \(B_n\) is the n-th Bernoulli number.

The first integral on the RHS of (B.2) may be splitted in the following two, which may be easily computed in the low temperature regime, viz. when \(\beta \epsilon _F\gg 1\) and \(\epsilon _F \gg \omega _c\) (or equivalently \(\alpha _s\gg 1\)):

$$\begin{aligned} \begin{aligned}\int _0^1 dx \frac{\alpha }{\beta \omega _c} \log (1+e^{(1-x)\alpha })&=\frac{6\alpha ^2+\pi ^2+12{\text {Li}}_2(-e^{-\alpha })}{12\beta \omega _c},\\ \int _0^{\infty }dx \log (1+e^{-\beta \omega _c x})&=\frac{\pi ^2}{12\beta \omega _c}. \end{aligned} \end{aligned}$$
(B.3)

In this expression we have made use of \({\text {Li}}_2(\cdot )\), the polylogarithm function of order 2.

On the other hand, the last term in the RHS of (B.2) can be neglected in our regime since it is \(O(e^{-\alpha _s})\). In effect, the cosine is bounded above by one so the entire term is bounded above by

$$\begin{aligned} \frac{(\beta \omega _c)^3}{4}\sinh \left( \frac{\alpha _s}{2}\right) \text {sch}^3\left( \frac{\alpha _s}{2}\right) , \end{aligned}$$
(B.4)

proving thus our assertion.

Adding expressions (B.2) and (B.3), and reintroducing the spin’ index s, we finally obtain for the partition function in the low temperature regime

$$\begin{aligned} -\beta \phi = \frac{\rho }{2}\sum _{s=\pm } \left( \frac{\alpha _s^2}{\beta \omega _c}+\alpha _s+\frac{\pi ^2}{3\beta \omega _c}+B_2\beta \omega _c+O(e^{-\alpha _s})\right) . \end{aligned}$$
(B.5)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franchino-Viñas, S., Vega, F. Magnetic properties of a Fermi gas in a noncommutative phase space. Eur. Phys. J. Plus 136, 877 (2021). https://doi.org/10.1140/epjp/s13360-021-01857-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01857-3

Navigation