Skip to main content
Log in

Controlling qubit–photon entanglement, entanglement swapping and entropic uncertainty via frequency modulation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We conduct a study into the impact of frequency modulation on the dynamic behavior of qubit–photon entanglement inside a leaky cavity and subsequently on the entanglement swapping between such two qubits. Furthermore, we investigate how frequency modulation can affect the entropic uncertainty and its lower bound. It is revealed that there are optimal modulation parameters for which the system experiences a long-lasting qubit–photon entanglement as well as a robust swapped entanglement. Moreover, the obtained result indicates that for the optimal modulation parameters, the entropic uncertainty can be maintained small for a long time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Einstein, B. Podolsky, N. Rosen, Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  2. C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, S.L. Braunstein, Advances in quantum teleportation. Nat. Photon. 9, 641 (2015)

    Article  ADS  Google Scholar 

  4. R. Lo Franco, G. Compagno, Indistinguishability of elementary systems as resource for quantum information processing. Phys. Rev. Lett. 120, 240403 (2018)

    Article  ADS  Google Scholar 

  5. R. Laflamme, C. Miquel, J.P. Paz, W.H. Zurek, Perfect quantum error correcting code. Phys. Rev. Lett. 77, 198 (1996)

    Article  ADS  Google Scholar 

  6. M.B. Plenio, V. Vedral, P.L. Knightand, Quantum error correction in the presence of spontaneous emission. Phys. Rev. A 55, 67 (1997)

    Article  ADS  Google Scholar 

  7. A.K. Ekert, Quantum cryptography based on Bell`s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. C.H. Bennett, S.J. Wiesner, Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. J. Volz, M. Weber, D. Schlenk, W. Rosenfeld, J. Vrana, K. Saucke, C. Kurtsiefer, H. Weinfurter, Observation of entanglement of a single photon with a trapped atom. Phys. Rev. Lett. 96, 030404 (2006)

    Article  ADS  Google Scholar 

  10. W. Rosenfeld, F. Hocke, F. Henkel, M. Krug, J. Volz, M. Weber, H. Weinfurter, Towards long-distance atom-photon entanglement. Phys. Rev. Lett. 101, 260403 (2008)

    Article  ADS  Google Scholar 

  11. N.I. Cummings, B.L. Hu, Dynamics of atom-field entanglement: towards strong-coupling and non-Markovian regimes. Phys. Rev. A 77, 053823 (2008)

    Article  ADS  Google Scholar 

  12. A. Mortezapour, M. Abedi, M. Mahmoudi, M.R.H. Khajehpour, The effect of a coupling field on the entanglement dynamics of a three-level atom. J. Phys. B: At. Mol. Opt. Phys. 44, 085501 (2011)

    Article  ADS  Google Scholar 

  13. M. Abazari, A. Mortezapour, M. Mahmoudi, M. Sahrai, Phase-controlled atom-photon entanglement in a three-level V-type atomic system via spontaneously generated coherence. Entropy 13, 1541 (2011)

    Article  ADS  MATH  Google Scholar 

  14. M.J. Faghihi, M.K. Tavassoly, Dynamics of entropy and nonclassical properties of the state of a lambda-type three-level atom interacting with a single-mode cavity field with intensity-dependent coupling in a Kerr medium. J. Phys. B: At. Mol. Opt. Phys. 45, 035502 (2012)

    Article  ADS  Google Scholar 

  15. A. Mortezapour, Z. Kordi, M. Mahmoudi, Phase-controlled atom-photon entanglement in a three level lambda-type closed-loop atomic system. Chin. Phys. B 22, 060310 (2013)

    Article  Google Scholar 

  16. A. Mortezapour, M. Mahmoudi, M.R.H. Khajehpour, Atom–photon, two-mode entanglement and two-mode squeezing in the presence of cross-Kerr nonlinearity. Opt. Quant. Electron. 47, 2311–2329 (2015)

    Article  Google Scholar 

  17. A. de Freitas, L. Sanz, J.M. Villas-Boas, Coherent control of the dynamics of a single quantum-dot exciton qubit in a cavity. Phys. Rev. B 95, 115110 (2017)

    Article  ADS  Google Scholar 

  18. Z. Amini Sabegh, R. Amiri, M. Mahmoud, Spatially dependent atom-photon entanglement. Sci. Rep. 8, 13840 (2018)

    Article  ADS  Google Scholar 

  19. F. Nosrati, A. Mortezapour, R.L. Franco, Validating and controlling quantum enhancement against noise by motion of a qubit. Phys. Rev. A 101, 012331 (2020)

    Article  ADS  Google Scholar 

  20. M. Zukowski, A. Zeilinger, M.A. Horne, A.K. Ekert, “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287 (1993)

    Article  ADS  Google Scholar 

  21. R.E.S. Polkinghorne, T.C. Ralph, Continuous variable entanglement swapping. Phys. Rev. Lett. 83, 2095 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. P. van Loock, S.L. Braunstein, Unconditional teleportation of continuous-variable entanglement. Phys. Rev. A 61, 010302(R) (1999)

    Article  MathSciNet  Google Scholar 

  23. J.-W. Pan, D. Bouwmeester, H. Weinfurter, A. Zeilinger, Experimental entanglement swapping: entangling photons that never interacted. Phys. Rev. Lett. 80, 3891 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. X. Jia, X. Su, Q. Pan, J. Gao, C. Xie, K. Peng, Experimental demonstration of unconditional entanglement swapping for continuous variables. Phys. Rev. Lett. 93, 250503 (2004)

    Article  ADS  Google Scholar 

  25. F. Basso Basset, M.B. Rota, C. Schimpf, D. Tedeschi, K.D. Zeuner, S.F. Covre da Silva, M. Reindl, V. Zwiller, K.D. Jöns, A. Rastelli, R. Trotta, Entanglement swapping with photons generated on demand by a quantum dot. Phys. Rev. Lett. 123, 160501 (2019)

    Article  ADS  Google Scholar 

  26. M. Zopf, R. Keil, Y. Chen, J. Yang, D. Chen, F. Ding, O.G. Schmidt, Entanglement swapping with semiconductor-generated photons violates Bell’s inequality. Phys. Rev. Lett. 123, 160502 (2019)

    Article  ADS  Google Scholar 

  27. W. Ning, X.J. Huang, P.R. Han, H. Li, H. Deng, Z.B. Yang, Z.R. Zhong, Y. Xia, K. Xu, D. Zheng, S.B. Zheng, Deterministic entanglement swapping in a superconducting circuit. Phys. Rev. Lett. 123, 060502 (2019)

    Article  ADS  Google Scholar 

  28. B. Bellomo, R. Lo Franco, G. Compagno, Non-Markovian effects on the dynamics of entanglement. Phys. Rev. Lett. 99, 160502 (2007)

    Article  ADS  Google Scholar 

  29. S. Maniscalco, F. Francica, R. L. Zaffino, N. Lo Gullo, and F. Plastina, “Protecting entanglement via the quantum Zeno effect,” Phys. Rev. Lett. 100, 090503 (2008).

  30. Y.S. Kim, J.C. Lee, O. Kwon, Y.H. Kim, Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117 (2011)

    Article  Google Scholar 

  31. R. LoFranco, A. D’Arrigo, G. Falci, G. Compagno, E. Paladino, Preserving entanglement and nonlocality in solid-state qubits by dynamical decoupling. Phys. Rev. B 90, 054304 (2014)

    Article  ADS  Google Scholar 

  32. S.C. Wang, Z.W. Yu, W.J. Zou, X.B. Wang, Protecting quantum states from decoherence of finite temperature using weak measurement. Phys. Rev. A 89, 022318 (2014)

    Article  ADS  Google Scholar 

  33. Z.X. Man, Y.J. Xiao, R. Lo Franco, Cavity-based architecture to preserve quantum coherence and entanglement. Sci. Rep. 5, 13843 (2015)

    Article  ADS  Google Scholar 

  34. M. Rafiee, A. Nourmandipour, S. Mancini, Universal feedback control of two-qubit entanglement. Phys. Rev. A 94, 012310 (2016)

    Article  ADS  Google Scholar 

  35. A. Nourmandipour, M.K. Tavassoly, M.A. Bolorizadeh, Quantum Zeno and anti-Zeno effects on the entanglement dynamics of qubits dissipating into a common and non-Markovian environment. J. Opt. Soc. Am. B 33, 1723 (2016)

    Article  ADS  Google Scholar 

  36. M. Rafiee, A. Nourmandipour, S. Mancini, Optimal feedback control of two-qubit entanglement in dissipative environments. Phys. Rev. A 96, 012340 (2017)

    Article  ADS  Google Scholar 

  37. A. Mortezapour, M.A. Borji, R. Lo Franco, Protecting entanglement by adjusting the velocities of moving qubits inside non-Markovian environments. Laser Phys. Lett. 14, 055201 (2017)

    Article  ADS  Google Scholar 

  38. N. Iliopoulos, A.F. Terzis, V. Yannopapas, E. Paspalakis, Prolonging entanglement dynamics near periodic plasmonic nanostructures. Phys. Rev. B 96, 075405 (2017)

    Article  ADS  Google Scholar 

  39. D.-X. Li, X.-Q. Shao, J.-H. Wu, X.X. Yi, Engineering steady-state entanglement via dissipation and quantum Zeno dynamics in an optical cavity. Opt. Lett. 42, 3904 (2017)

    Article  ADS  Google Scholar 

  40. S. Golkar, M.K. Tavassoly, A. Nourmandipour, Entanglement dynamics of moving qubits in a common environment. J. Opt. Soc. Am. A 37, 400 (2020)

    Article  ADS  Google Scholar 

  41. A. Mortezapour, A. Nourmandipour, H. Gholipour, The effect of classical driving field on the spectrum of a qubit and entanglement swapping inside dissipative cavities. Quantum Inf. Process. 19, 136 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  42. W. Heisenberg, The Actual Content of Quantum Theoretical Kinematics and Mechanics. Z. Phys. 43, 172 (1927)

    Article  ADS  MATH  Google Scholar 

  43. E.H. Kennard, To quantum mechanics of simple types of movement. Z. Phys. 44, 326 (1927)

    Article  ADS  Google Scholar 

  44. H.P. Robertson, The uncertainty principle. Phys. Rev. 34, 163 (1929)

    Article  ADS  Google Scholar 

  45. E. Schrödinger, Zum Heisenbergschen Unschärfeprinzip. Phys. Math. Kl. 14, 296 (1930)

    MATH  Google Scholar 

  46. D. Deutsch, Uncertainty in quantum measurements. Phys. Rev. Lett. 50, 631 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  47. K. Kraus, Complementary observables and uncertainty relations. Phys. Rev. D 35, 3070 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  48. H. Maassen, J.B.M. Uffink, Generalized entropic uncertainty relations. Phys. Rev. Lett. 60, 1103 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  49. J.M. Renes, J.C. Boileau, Conjectured strong complementary information trade off. Phys. Rev. Lett. 103, 020402 (2009)

    Article  ADS  Google Scholar 

  50. M. Berta, M. Christandl, R. Colbeck, J. Renes, R. Renner, The uncertainty principle in the presence of quantum memory. Nat. Phys. 6, 659 (2010)

    Article  Google Scholar 

  51. G. Karpat, J. Piilo, S. Maniscalco, Controlling entropic uncertainty bound through memory effects. Europhys. Lett. 111, 50006 (2015)

    Google Scholar 

  52. F. Adabi, S. Salimi, S. Haseli, Tightening the entropic uncertainty bound in the presence of quantum memory. Phys. Rev. A 93, 062123 (2016)

    Article  ADS  Google Scholar 

  53. D. Wang, A.-J. Huang, R.D. Hoehn, F. Ming, W.-Y. Sun, J.-D. Shi, L. Ye, S. Kais, Entropic uncertainty relations for Markovian and non-Markovian processes under a structured bosonic reservoir. Sci. Rep. 7, 1066 (2017)

    Article  ADS  Google Scholar 

  54. M.-N. Chen, D. Wang, L. Ye, Characterization of dynamical measurement’s uncertainty in a two-qubit system coupled with bosonic reservoirs. Phys. Lett. A 383, 977 (2019)

    Article  ADS  Google Scholar 

  55. G.-Q. Zhang, J.-B. Xu, Influence of weak measurement on uncertainty relations in a quantum dissipative system. J. Opt. Soc. Am. B 36, 205 (2019)

    Article  ADS  Google Scholar 

  56. Y. Zhang, M. Fang, G. Kang, Q. Zhou, Controlling quantum memory-assisted entropic uncertainty in non-Markovian environments. Quantum Inf. Process. 17, 62 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. D. Wang, W.-N. Shi, R.D. Hoehn, F. Ming, W.-Y. Sun, L. Ye, S. Kais, Probing entropic uncertainty under a two-atom system coupled with structured bosonic reservoirs. Quantum Inform. Process. 17, 335 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. P.-F. Chen, L. Ye, D. Wang, The effect of non-Markovianity on the measurement-based uncertainty. Eur. Phys. J. D 73, 108 (2019)

    Article  ADS  Google Scholar 

  59. X.M. Bai, N.T. Xue, N. Liu, J.Q. Li, J.Q. Liang, The entropic uncertainty relation for two qubits in the cavity-based architecture. Annalen der Physik 531, 1900098 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  60. M.W. Noel, W.M. Griffith, T.F. Gallagher, Frequency-modulated excitation of a two-level atom. Phys. Rev. A 58, 2265 (1998)

    Article  ADS  Google Scholar 

  61. M.P. Silveri, J.A. Tuorila, E.V. Thuneberg, G.S. Thuneberg, Quantum systems under frequency modulation. Rep. Prog. Phys. 80, 056002 (2017)

    Article  ADS  Google Scholar 

  62. J. Tuorila, M. Silveri, M. Sillanpää, E. Thuneberg, Y. Makhlin, P. Hakonen, Stark effect and generalized Bloch-Siegert shift in a strongly driven two-level system. Phys. Rev. Lett. 105, 257003 (2010)

    Article  ADS  Google Scholar 

  63. Y. Nakamura, Y.A. Pashkin, J.S. Tsai, Rabi oscillations in a Josephson-junction charge two-level system. Phys. Rev. Lett. 87, 246601 (2001)

    Article  ADS  Google Scholar 

  64. J. Li, M.P. Silveri, K.S. Kumar, J.M. Pirkkalainen, A. Vepsäläinen, W.C. Chien, J. Tuorila, M.A. Sillanpää, P.J. Hakonen, E.V. Thuneberg, G.S. Paraoanu, Motional averaging in a superconducting qubit. Nat. Commun. 4, 1420 (2013)

    Article  ADS  Google Scholar 

  65. W.D. Oliver, Y. Yu, J.C. Lee, K.K. Berggren, L.S. Levitov, T.P. Orlando, Mach-Zehnder interferometry in a strongly driven superconducting qubit. Science 310, 1653 (2005)

    Article  ADS  Google Scholar 

  66. A. Trabesinger, Quantum computing: towards reality. Nature 543, S1 (2017)

    Article  ADS  Google Scholar 

  67. F. Beaudoin, M.P. da Silva, Z. Dutton, A. Blais, First-order sidebands in circuit QED using qubit frequency modulation. Phys. Rev. A 86, 022305 (2012)

    Article  ADS  Google Scholar 

  68. J.D. Strand, M. Ware, F. Beaudoin, T.A. Ohki, B.R. Johnson, A. Blais, B.L.T. Plourde, First-order sideband transitions with flux-driven asymmetric transmon qubits. Phys. Rev. B 87, 220505(R) (2013)

    Article  ADS  Google Scholar 

  69. Z. Ficek, J. Seke, A.V. Soldatov, G. Adam, Fluorescence spectrum of a two-level atom driven by a multiple modulated field. Phys. Rev. A 64, 013813 (2001)

    Article  ADS  Google Scholar 

  70. M. Janowicz, Non-Markovian decay of an atom coupled to a reservoir: Modification by frequency modulation. Phys. Rev. A 61, 025802 (2000)

    Article  ADS  Google Scholar 

  71. L. Zhou, S. Yang, Y.X. Liu, C.P. Sun, F. Nori, Quantum Zeno switch for single-photon coherent transport. Phys. Rev. A 80, 062109 (2009)

    Article  ADS  Google Scholar 

  72. C. Deng, J.L. Orgiazzi, F. Shen, S. Ashhab, A. Lupascu, Observation of Floquet states in a strongly driven artificial atom. Phys. Rev. Lett. 115, 133601 (2015)

    Article  ADS  Google Scholar 

  73. M. Macovei, C.H. Keitel, Quantum dynamics of a two-level emitter with a modulated transition frequency. Phys. Rev. A 90, 043838 (2014)

    Article  ADS  Google Scholar 

  74. A. Mortezapour, R. Lo Franco, Protecting quantum resources via frequency modulation of qubits in leaky cavities. Sci. Rep. 8, 14304 (2018)

    Article  ADS  Google Scholar 

  75. H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002)

    MATH  Google Scholar 

  76. H. Araki, E. Lieb, Entropy inequalities. Commun. Math. Phys. 18, 160 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  77. S.J.D. Phoenix, P.L. Knight, Establishment of an entangled atom-field state in the Jaynes-Cummings model. Phys. Rev. A 44, 6023 (1991)

    Article  ADS  Google Scholar 

  78. S.J.D. Phoenix, P.L. Knight, Comment on “Collapse and revival of the state vector in the Jaynes– Cummings model: an example of state preparation by a quantum apparatus. Phys. Rev. Lett. 66, 2833 (1991)

    Article  ADS  Google Scholar 

  79. S.W. Lee, H. Jeong, Bell-state measurement and quantum teleportation using linear optics: two-photon pairs, entangled coherent states, and hybrid entanglement. arXiv 1304, 1214 (2013)

    ADS  Google Scholar 

  80. W.K. Wootters, Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Mortezapour.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest related to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forozesh, M., Mortezapour, A. & Nourmandipour, A. Controlling qubit–photon entanglement, entanglement swapping and entropic uncertainty via frequency modulation. Eur. Phys. J. Plus 136, 778 (2021). https://doi.org/10.1140/epjp/s13360-021-01769-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01769-2

Navigation