Skip to main content
Log in

The effect of classical driving field on the spectrum of a qubit and entanglement swapping inside dissipative cavities

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we study the effect of the classical driving field on the spontaneous emission spectrum of a qubit embedded in a dissipative cavity. Furthermore, we monitor the entanglement dynamics of the driven qubit with its radiative decay under the action of the classical field. Afterward, we carry out an investigation on the possibility of entanglement swapping between two such driven qubit systems. The swapping will be feasible with the aid of a Bell state measurement performing on the photons leaving the cavities. It is demonstrated that the classical driving field has a beneficial effect on the prolonging of the swapped entanglement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Benenti, G., Casati, G., Strini, G.: Principle of Quantum Computation and Information. World Scientific, Singapore (2005)

    MATH  Google Scholar 

  3. Ekert, A.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  4. Cirac, J.I., Gisin, N.: Coherent eavesdropping strategies for the four state quantum cryptography protocol. Phys. Lett. A 229, 1 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Raimond, J.M., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Pazy, E., et al.: Spin-based optical quantum computation via Pauli blocking in semiconductor quantum dots. Europhys. Lett. 62, 175 (2003)

    Article  ADS  Google Scholar 

  8. Pachos, J., Walther, H.: Quantum computation with trapped ions in an optical cavity. Phys. Rev. Lett. 89, 187903 (2002)

    Article  ADS  Google Scholar 

  9. Cirac, J., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091 (1995)

    Article  ADS  Google Scholar 

  10. Monroe, C., Meekhof, D.M., King, B.E., Itano, W.M., Wineland, D.J.: Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75, 4714 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Sackett, C.A., et al.: Experimental entanglement of four particles. Nature (London) 404, 256 (2000)

    Article  ADS  Google Scholar 

  12. Yang, C.P., Chu, S.I., Han, S.: Possible realization of entanglement, logical gates, and quantum-information transfer with superconducting-quantum-interference-device qubits in cavity QED. Phys. Rev. A 67, 042311 (2003)

    Article  ADS  Google Scholar 

  13. Yang, C.P., Chu, S.I., Han, S.: Quantum information transfer and entanglement with SQUID qubits in cavity QED: a dark-state scheme with tolerance for nonuniform device parameter. Phys. Rev. Lett. 92, 117902 (2004)

    Article  ADS  Google Scholar 

  14. Żukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287 (1993)

    Article  ADS  Google Scholar 

  15. Polkinghorne, R.E.S., Ralph, T.C.: Continuous variable entanglement swapping. Phys. Rev. Lett. 83, 2095 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Jia, X., Su, X., Pan, Q., Gao, J., Xie, C., Peng, K.: Experimental demonstration of unconditional entanglement swapping for continuous variables. Phys. Rev. Lett. 93, 250503 (2004)

    Article  ADS  Google Scholar 

  17. Hu, C.Y., Rarity, J.G.: Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity. Phys. Rev. B 83, 115303 (2011)

    Article  ADS  Google Scholar 

  18. Liao, Q.H., Fang, G.Y., Wang, Y.Y., Ahmad, M.A., Liu, S.: Entanglement swapping in two independent Jaynes–Cummings models. Eur. Phys. J. D 61, 475 (2011)

    Article  ADS  Google Scholar 

  19. Ghasemi, M., Tavassoly, M.K., Nourmandipour, A.: Dissipative entanglement swapping in the presence of detuning and Kerr medium: Bell state measurement method. Eur. Phys. J. 132, 531 (2017)

    Google Scholar 

  20. Nourmandipour, A., Tavassoly, M.K.: Entanglement swapping between dissipative systems. Phys. Rev. A 94, 022339 (2016)

    Article  ADS  Google Scholar 

  21. Yu, T., Eberly, J.H.: Qubit disentanglement and decoherence via dephasing. Phys. Rev. B 68(16), 165322 (2003)

    Article  ADS  Google Scholar 

  22. Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93(14), 140404 (2004)

    Article  ADS  Google Scholar 

  23. Santos, M.F., Milman, P., Davidovich, L., Zagury, N.: Direct measurement of finite-time disentanglement induced by a reservoir. Phys. Rev. B 73(4), 040305 (2006)

    Article  Google Scholar 

  24. Xiao, X., Fang, M.F., Li, Y.L., Zeng, K., Wu, C.: Robust entanglement preserving by detuning in non-Markovian regime. J. Phys. B: At. Mol. Opt. Phys. 42, 235502 (2009)

    Article  ADS  Google Scholar 

  25. Maniscalco, S., Francica, F., Zaffino, R.L., Gullo, N.L., Plastina, F.: Protecting entanglement via the quantum Zeno effect. Phys. Rev. Lett. 100, 090503 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Das, S., Agarwal, G.S.: Protecting bipartite entanglement by quantum interferences. Phys. Rev. A 81, 052341 (2010)

    Article  ADS  Google Scholar 

  27. Nourmandipour, A., Tavassoly, M.K.: Dynamics and protecting of entanglement in two-level systems interacting with a dissipative cavity: the Gardiner–Collett approach. J. Phys. B: At. Mol. Opt. Phys. 48, 165502 (2015)

    Article  ADS  Google Scholar 

  28. Nourmandipour, A., Tavassoly, M.K.: A novel approach to entanglement dynamics of two two-level atoms interacting with dissipative cavities. Eur. Phys. J. Plus 130, 148 (2015)

    Article  Google Scholar 

  29. Yang, Y., Xu, J., Chen, H., Zhu, S.Y.: Long-lived entanglement between two distant atoms via left-handed materials. Phys. Rev. A 82, 030304 (2010)

    Article  ADS  Google Scholar 

  30. Mukhtar, M., Soh, W.T., Saw, T.B., Gong, J.: Protecting unknown two-qubit entangled states by nesting Uhrig’s dynamical decoupling sequences. Phys. Rev. A 82, 052338 (2010)

    Article  ADS  Google Scholar 

  31. Dudin, Y.O., Li, L., Bariani, F., Kuzmich, A.: Observation of coherent many-body Rabi oscillations. Nat. Phys. 8, 790 (2012)

    Article  Google Scholar 

  32. Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81, 040103 (2010)

    Article  ADS  Google Scholar 

  33. Sun, Q., Al-Amri, M., Luiz, D., Suhail, Z.M.: Reversing entanglement change by a weak measurement. Phys. Rev. A 82, 052323 (2010)

    Article  ADS  Google Scholar 

  34. Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117 (2011)

    Article  Google Scholar 

  35. Chaudhry, A.Z., Gong, J.: Decoherence control: universal protection of two-qubit states and two-qubit gates using continuous driving fields. Phys. Rev. A 85, 012315 (2012)

    Article  ADS  Google Scholar 

  36. Nourmandipour, A., Tavassoly, M.K., Bolorizadeh, M.A.: Quantum Zeno and anti-Zeno effects on the entanglement dynamics of qubits dissipating into a common and non-Markovian environment. J. Opt. Soc. Am. B 33, 1723 (2016)

    Article  ADS  Google Scholar 

  37. Rafiee, M., Nourmandipour, A., Mancini, S.: Universal feedback control of two-qubit entanglement. Phys. Rev. A 94, 012310 (2016)

    Article  ADS  Google Scholar 

  38. Rafiee, M., Nourmandipour, A., Mancini, S.: Optimal feedback control of two-qubit entanglement in dissipative environments. Phys. Rev. A 96, 012340 (2017)

    Article  ADS  Google Scholar 

  39. Xu, J.S., Sun, K., Li, C.-F., Xu, X.-Y., Guo, G.-C., Andersson, E., Lo Franco, R., Compagno, G.: Experimental recovery of quantum correlations in absence of system-environment back-action. Nat. Commun. 4, 2851 (2013)

    Article  ADS  Google Scholar 

  40. D’Arrigo, A., Lo Franco, R., Benenti, G., Paladin, E., Falci, G.: Recovering entanglement by local operations. Ann. Phys. 350, 211 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Wang, S.C., Yu, Z.W., Zou, W.J., Wang, X.B.: Protecting quantum states from decoherence of finite temperature using weak measurement. Phys. Rev. A 89, 022318 (2014)

    Article  ADS  Google Scholar 

  42. Lo Franco, R., D’Arrigo, A., Falci, G., Compagno, G., Paladino, E.: Preserving entanglement and nonlocality in solid-state qubits by dynamical decoupling. Phys. Rev. B 90, 054304 (2014)

    Article  ADS  Google Scholar 

  43. Leggio, B., Lo Franco, R., Soares-Pinto, D.O., Horodecki, P., Compagno, G.: Distributed correlations and information flows within a hybrid multipartite quantum-classical system. Phys. Rev. A 92, 032311 (2015)

    Article  ADS  Google Scholar 

  44. Man, Z.X., Xia, Y.J., Lo Franco, R.: Cavity-based architecture to preserve quantum coherence and entanglement. Sci. Rep. 5, 13843 (2015)

    Article  ADS  Google Scholar 

  45. Liu, X., Tian, Z., Wang, J., Jing, J.: Inhibiting decoherence of two-level atom in thermal bath by presence of boundaries. Quantum Inf. Process. 15, 3677 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Nourmandipour, A., Tavassoly, M.K., Rafiee, M.: Dynamics and protection of entanglement in n-qubit systems within Markovian and non-Markovian environments. Phys. Rev. A 93, 022327 (2016)

    Article  ADS  Google Scholar 

  47. Iliopoulos, N., Terzis, A.F., Yannopapas, V., Paspalakis, E.: Prolonging entanglement dynamics near periodic plasmonic nanostructures. Phys. Rev. B 96, 075405 (2017)

    Article  ADS  Google Scholar 

  48. Mortezapour, A., Borji, M.A., Lo Franco, R.: Protecting entanglement by adjusting the velocities of moving qubits inside non-Markovian environments. Laser Phys. Lett. 14, 055201 (2017)

    Article  ADS  Google Scholar 

  49. Mortezapour, A., Naeimi, G., Lo Franco, R.: Coherence and entanglement dynamics of vibrating qubits. Opt. Commun. 424, 26 (2018)

    Article  ADS  Google Scholar 

  50. Mortezapour, A., Lo Franco, R.: Protecting quantum resources via frequency modulation of qubits in leaky cavities. Sci. Rep. 8, 14304 (2018)

    Article  ADS  Google Scholar 

  51. Wang, Y.Y., Fang, M.F.: Enhancing and protecting quantum correlations of a two-qubit entangled system via non-Hermitian operation. Quantum Inf. Process. 17, 208 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Murch, K.W., Vool, U., Zhou, D., Weber, S.J., Girvin, S.M., Siddiqi, I.: Cavity-assisted quantum bath engineering. Phys. Rev. Lett. 109, 183602 (2012)

    Article  ADS  Google Scholar 

  53. Long, J., Ku, H.S., Wu, X., Gu, X., Lake, R.E., Bal, M., Liu, Y., Pappas, D.P.: Electromagnetically induced transparency in circuit quantum electrodynamics with nested polariton states. Phys. Rev. Lett. 120, 083602 (2018)

    Article  ADS  Google Scholar 

  54. Xiao, X., Fang, M.F., Li, Y.L.: Non-Markovian dynamics of two qubits driven by classical fields: population trapping and entanglement preservation. J. Phys. B: At. Mol. Opt. Phys. 43, 185505 (2010)

    Article  ADS  Google Scholar 

  55. Haikka, P., Maniscalco, S.: Non-Markovian dynamics of a damped driven two-state system. Phys. Rev. A 81, 052103 (2010)

    Article  ADS  Google Scholar 

  56. Zhang, Y.J., Han, W., Xia, Y.J., Cao, J.P., Fan, H.: Classical-driving-assisted quantum speed-up. Phys. Rev. A 91, 032112 (2015)

    Article  ADS  Google Scholar 

  57. Gholipour, H., Mortezapour, A., Nosrati, F., Franco, R.L.: Quantumness and memory of one qubit in a dissipative cavity under classical control. Ann. Phys. 414, 168073 (2020)

    Article  MathSciNet  Google Scholar 

  58. Li, Y.L., Xiao, X., Yao, Y.: Classical-driving-enhanced parameter-estimation precision of a non-Markovian dissipative two-state system. Phys. Rev. A 91, 052105 (2015)

    Article  ADS  Google Scholar 

  59. Ren, Y.K., Tang, L.M., Zeng, H.S.: Protection of quantum Fisher information in entangled states via classical driving. Quantum Inf. Process. 15, 5011 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Huang, Z., Situ, H.: Non-Markovian dynamics of quantum coherence of two-level system driven by classical field. Quantum Inf. Process. 16, 222 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  MATH  Google Scholar 

  62. Zanardi, P., Zalka, C., Faoro, L.: Entangling power of quantum evolutions. Phys. Rev. A 62, 030301 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  63. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  64. Zhu, S.Y., Chan, R.C.F., Lee, C.P.: Spontaneous emission from a three-level atom. Phys. Rev. A 52, 710 (1995)

    Article  ADS  Google Scholar 

  65. Mortezapour, A., Abedi, M., Mahmoudi, M., Khajehpour, M.R.H.: The effect of a coupling field on the entanglement dynamics of a three-level atom. J. Phys. B: At. Mol. Opt. Phys. 44, 085501 (2011)

    Article  ADS  Google Scholar 

  66. Abazari, M., Mortezapour, A., Mahmoudi, M., Sahrai, M.: Phase-controlled atom-photon entanglement in a three-level V-type atomic system via spontaneously generated coherence. Entropy 13, 1541 (2011)

    Article  ADS  MATH  Google Scholar 

  67. Mortezapour, A., Kordi, Z., Mahmoudi, M.: Phase-controlled atom-photon entanglement in a three-level \(\Lambda \)-type closed-loop atomic system. Chin. Phys. B 22, 060310 (2013)

    Article  Google Scholar 

  68. Kordi, Z., Ghanbari, S., Mahmoudi, M.: Atom-photon entanglement beyond the multi-photon resonance condition. Quantum Inf. Process. 15(1), 199 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. Nosrati, F., Mortezapour, A., Franco, R.L.: Validating and controlling quantum enhancement against noise by motion of a qubit. Phys. Rev. A 101, 012331 (2020)

    Article  ADS  Google Scholar 

  70. Araki, H., Lieb, E.: Entropy inequalities. Commun. Math. Phys. 18, 160 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  71. Phoenix, S.J.D., Knight, P.L.: Establishment of an entangled atom-field state in the Jaynes–Cummings model. Phys. Rev. A 44, 6023 (1991)

    Article  ADS  Google Scholar 

  72. Phoenix, S.J.D., Knight, P.L.: Comment on “Collapse and revival of the state vector in the Jaynes–Cummings model: an example of state preparation by a quantum apparatus”. Phys. Rev. Lett. 66, 2833 (1991)

    Article  ADS  Google Scholar 

  73. Lee, S.-W., Jeong, H.: Bell-state measurement and quantum teleportation using linear optics: two-photon pairs, entangled coherent states, and hybrid entanglement. arXiv:1304.1214 (2013)

  74. Nourmandipour, A., Tavassoly, M.K., Mancini, S.: The entangling power of a “glocal” dissipative map. Quantum Inf. Comput. 16, 0969 (2016)

    MathSciNet  Google Scholar 

  75. Briegel, H.-J., Dür, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Mortezapour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mortezapour, A., Nourmandipour, A. & Gholipour, H. The effect of classical driving field on the spectrum of a qubit and entanglement swapping inside dissipative cavities. Quantum Inf Process 19, 136 (2020). https://doi.org/10.1007/s11128-020-02634-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02634-4

Keywords

Navigation