Skip to main content
Log in

The Hamilton–Jacobi analysis for higher-order Maxwell–Chern–Simons gauge theory

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

By using the Hamilton–Jacobi [HJ] framework, the higher-order Maxwell–Chern–Simons theory is analyzed. The complete set of HJ Hamiltonians and a generalized HJ differential are reported, from which all symmetries of the theory are identified. In addition, we complete our study by performing the higher-order Gitman–Lyakhovich–Tyutin [GLT] framework and compare the results of both formalisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ostrogradski, Memoires de l’Academie Imperiale des Science de Saint-Petersbourg, IV, 385 (1850); in Variatsionnye printzipy mekhaniki, ed. L. S. Polak (Fizmatgiz, 1959), p.315

  2. B. Podolsky, Phys. Rev. 62, 68 (1942)

    Article  ADS  MathSciNet  Google Scholar 

  3. B. Podolsky, C. Kikuchi, Phys. Rev. 65, 228 (1944)

    Article  ADS  MathSciNet  Google Scholar 

  4. B. Podolsky, C. Kikuchi, Phys. Rev. 67, 184 (1945)

    Article  ADS  MathSciNet  Google Scholar 

  5. J.A. Wheeler, R.P. Feynman, Rev. Mod. Phys. 21, 425 (1949)

    Article  ADS  Google Scholar 

  6. D.A. Eliezer, R.P. Woodard, Nucl. Phys. B 325, 389 (1989)

    Article  ADS  Google Scholar 

  7. G. W. Gibbons; arXiv:hep-th/0302199

  8. R.P. Woodard, Lect. Notes Phys. 720, 403 (2007)

    Article  ADS  Google Scholar 

  9. K.S. Stelle, Phys. Rev. D 16, 953 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  10. E.S. Fradkin, A.A. Tseytlin, Nucl. Phys. B 201, 469 (1982)

    Article  ADS  Google Scholar 

  11. D.M. Gitman, I.V. Tyutin, Quantization of Fields with Constraints, in: Springer Series in Nuclear and Particle Physics, Springer, (1990)

  12. Y. Güler, On the dynamics of singular continuous systems. J. Math. Phys. 30, 785 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  13. C. Caratheodory, Calculus of Variations and Partial Diferential Equations of the First Order, 3rd edn. (American Mathematical Society, Providence, 1999)

    Google Scholar 

  14. M.C. Bertin, B.M. Pimentel, C.E. Valcárcel, Ann. Phys. 323, 3137 (2008)

    Article  ADS  Google Scholar 

  15. M.C. Bertin, B.M. Pimentel, C.E. Valcárcel, J. Math. Phys. 55, 112901 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  16. N.T. Maia, B.M. Pimentel, C.E. Valcárcel, Class. Quantum Grav. 32, 185013 (2015)

    Article  ADS  Google Scholar 

  17. A. Escalante, A. Pantoja, Eur. Phys. J. Plus 134, 437 (2019)

    Article  Google Scholar 

  18. A. Escalante, M. Eduardo Hernández-García, Eur. Phys. J. Plus 135, 245 (2020)

    Article  Google Scholar 

  19. D. M. Gitman, S. L. Lyakhovich, and I. V. Tyutin, Izvestiya Vuz. Fiz. 26, 61, (1983), Sov. Phys. J., 730 (1984)

  20. D.M. Gitman, S.L. Lyakhovich, I.V. Tyutin, Izvestiya Vuz. Fiz. 28, 37 (1985)

    Google Scholar 

  21. S. Kumar, Int. J. Mod. Phys. A 18, 1613–1622 (2003)

    Article  ADS  Google Scholar 

  22. P. Mukherjee, B. Paul, Phys. Rev. D 85, 045028 (2012)

    Article  ADS  Google Scholar 

  23. A. Escalante, I. García, Int. J. Geom. Meth. Mod. Phys. 9(7), 1250053 (2012)

    Article  Google Scholar 

  24. G.B. de Gracia, B.M. Pimentel, C.E. Valcárcel, Eur. Phys. J. Plus 132, 438 (2017)

    Article  Google Scholar 

  25. M.C. Bertin, B.M. Pimentel, C.E. Valcárcel, G.E.R. Zambrano, J. Math. Phys. 55, 112901 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  26. R. Banerjee, H.J. Rothe, K.D. Rothe, Phys. Lett. B 463(2), 248–251 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  27. R. Banerjee, H.J. Rothe, K.D. Rothe, Phys. Lett. B 479(4), 429–434 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  28. D.G.C. McKeon, Can. J. Phys. 90, 249–264 (2012)

    Article  ADS  Google Scholar 

  29. A. Escalante and J. Hernández-Aguilar, New canonical analysis for higher order topologically massive gravity, to be published (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Escalante.

Appendix: Gauge transformations

Appendix: Gauge transformations

1.1 HJ formalism

We start by calculating the characteristic equations from the fundamental differential, which will reveal the symmetries of the theory. Using (17), we find them to be

$$\begin{aligned} \nonumber d\xi _{0}= & {} v_{0}dt - d\sigma ^{2}, \\ \nonumber d\xi _{i}= & {} v_{i}dt + \partial _{i}d\sigma ^{3}, \\ \nonumber d\pi ^{0}= & {} \left[ \frac{1}{2}{\partial _{i}}v^{i} - \frac{1}{2}\nabla ^{2}\xi _{0} + \frac{3\theta }{4}\epsilon ^{i j}{\partial _{i}}\xi _{j} - \nabla ^{2}{\tilde{\pi }}^{0} + \frac{1}{4m}\epsilon ^{i j}\nabla ^{2}{\partial _{i}}\xi _{j} + \frac{1}{2}{\partial _{i}}\pi ^{i} \right] dt, \\ \nonumber d\pi ^{i}= & {} \left[ -\partial _{j}F^{i j}- \frac{\theta }{2}\epsilon ^{i j}v_{j} - \nabla ^{2}{\tilde{\pi }}^{i} \right] dt - \frac{1}{2m}\epsilon ^{i j}\partial _{j}d\sigma ^{1} + \left[ \frac{\theta }{2}\epsilon ^{i j}\partial _{j} + \frac{1}{2m}\epsilon ^{i j}\nabla ^{2}\partial _{j}\right] d\sigma ^{3}, \\ \nonumber dv_{0}= & {} \nabla ^{2}\xi _{0}dt + d\sigma ^{1}, \\ \nonumber dv_{i}= & {} \left[ \frac{1}{2} \nabla ^{2}\xi _{i}+ \frac{1}{2}\partial _{i}v_{0} -m\epsilon _{i j}v^{j} +m \epsilon _{i j}\partial ^{j}\xi _{0} + \frac{\theta m}{2}\xi _{i} + m\epsilon _{i j}\pi ^{j}\right] dt - \partial _{i}d\sigma ^{2}, \\ \nonumber d{\tilde{\pi }}^{0}= & {} -\pi ^{0}dt, \\ d{\tilde{\pi }}^{i}= & {} \left[ \frac{1}{2}v^{i} - \frac{1}{2}\partial ^{i}\xi _{0} + \frac{\theta }{4}\epsilon ^{i j}\xi _{j} - \frac{1}{4m}\epsilon ^{i j}\partial _{j}v_{0} + \frac{1}{4m}\epsilon ^{i j}\nabla ^{2}\xi _{j} - \frac{1}{2}\pi ^{i} \right] dt. \end{aligned}$$
(41)

The evolution of the dynamical variables with respect to our parameters \(\sigma ^{i}\) is understood as canonical transformations, with the corresponding Hamiltonians \(\Gamma ^{i}\) as generators [24, 25]. Due to Frobenius’ theorem [25], the transformation with respect to one of these parameters is independent of the evolution along the others. To relate these canonical transformations to the gauge ones, we set \(dt=0\) [15], obtaining

$$\begin{aligned} \delta \xi _{0}= & {} -\delta \sigma ^{2}, \nonumber \\ \delta \xi _{i}= & {} \partial _{i} \delta \sigma ^{3}, \nonumber \\ \delta \pi ^{0}= & {} 0, \nonumber \\ \delta \pi ^{i}= & {} -\frac{1}{2m} \epsilon ^{i j} \partial _{j} \delta \sigma ^{1} + \left[ \frac{\theta }{2} \epsilon ^{i j} \partial _{j}+\frac{1}{2m} \epsilon ^{i j} \nabla ^{2} \partial _{j}\right] \delta \sigma ^{3}, \nonumber \\ \delta v_{0}= & {} \delta \sigma ^{1}, \nonumber \\ \delta v_{i}= & {} -\partial _{i} \delta \sigma ^{2}, \nonumber \\ \delta {\tilde{\pi }}^{0}= & {} 0, \nonumber \\ \delta {\tilde{\pi }}^{i}= & {} 0. \end{aligned}$$
(42)

In HJ, to find the gauge transformations it is necessary to see the specific conditions in which (42) acts into the Lagrangian. Thus, the Lagrangian (1) becomes invariant under these transformations if \(\delta L =0\). This will result in relations between the parameters \(\sigma ^{2}, \sigma ^3\). The variation in the Lagrangian is

$$\begin{aligned} \delta L = \int dt\;d^{2}x\; \left[ \frac{\partial {\mathcal {L}}}{\partial A_{\mu }}\delta A_{\mu } + \frac{\partial {\mathcal {L}}}{\partial (\partial _{\nu }A_{\mu })}\delta (\partial _{\nu }A_{\mu }) + \frac{\partial {\mathcal {L}}}{\partial (\partial _{\nu }\partial ^{\mu }A_{\mu })}\delta (\partial _{\nu }\partial ^{\mu }A_{\mu })\right] ; \end{aligned}$$

here we use \(A_{\mu }\) instead of \(\xi _{\mu }\) to more easily compare both formalisms. This, up to a total time derivative, is found to be

$$\begin{aligned} \delta L = \int dt\;d^{2}x\; \left[ \theta \epsilon ^{\sigma \nu \lambda }\partial _{\nu } A_{\lambda } + \partial _{\rho }F^{\rho \sigma } - \frac{1}{2m}\epsilon ^{\sigma \rho \mu }\left( \partial _{0}\partial ^{0}\partial _{\rho }A_{\mu }\right) + \frac{1}{m}\epsilon ^{\sigma \nu \lambda }\nabla ^{2}\partial _{\nu } A_{\lambda }\right] \delta A_{\sigma } = 0. \nonumber \\ \end{aligned}$$
(43)

We can combine the first and second equations in (42) to write the variation in \(A_{\sigma }\) as

$$\begin{aligned} \delta A_{\sigma } = - \delta _{\sigma }^{0}\delta \sigma ^{2} + \delta _{\sigma }^{i} \partial _{i} \delta \sigma ^{3}; \end{aligned}$$
(44)

thus, by using (44) into (43) the variation in the action takes the form

$$\begin{aligned} \delta L = -\int dt\;d^{2}x\;\left( \theta \epsilon ^{i j}\partial _{i} A_{j} + \partial _{i}F^{i 0} - \frac{1}{2m}\epsilon ^{i j}\partial _{i}{\ddot{A}}_{j} + \frac{1}{m}\epsilon ^{i j}\nabla ^{2}\partial _{i} A_{j}\right) \left( \delta \sigma ^{2} + \partial _{0} \delta \sigma ^{3}\right) = 0.\nonumber \\ \end{aligned}$$
(45)

The theory will be invariant under (42) if the parameters \(\sigma ^{i}\) obey

$$\begin{aligned} \delta \sigma ^{2} = -\partial _{0} \delta \sigma ^{3}; \end{aligned}$$
(46)

hence, from (44) the gauge transformations are given by

$$\begin{aligned} \delta A_{\mu } = \partial _{\mu } \delta \sigma ^{3}. \end{aligned}$$
(47)

Additionally, since \(v_{\mu } = {\dot{A}}_{\mu }\), it can be seen that \(\delta \sigma ^{1} = \partial _{0}\partial _{0} \delta \sigma ^{3}\).

1.2 GLT formalism

In this section, we use Castellani’s procedure [22, 26, 27] to obtain the gauge transformations. We start this calculation with the Hamiltonian (21), the constraints given in (32), and the Dirac brackets (36). First, we define the gauge generator as

$$\begin{aligned} G=\int \epsilon _{a} \gamma ^{a} d^{2}x, \end{aligned}$$
(48)

where \(\epsilon _{a}\) are the gauge parameters and \(a=1,2,3\). This generates infinitesimal gauge transformations on phase space variables, say F, through

$$\begin{aligned} \delta F=\int \delta \epsilon _{a}(y)\left\{ F(x), \gamma ^{a}(y)\right\} _{D} d^{2} y. \end{aligned}$$
(49)

In particular, the generator obeys the following equation, called the master equation,

$$\begin{aligned} \frac{\partial }{\partial t} G+\left\{ G, {\mathcal {H}}_{T}\right\} _{D}=0. \end{aligned}$$
(50)

where \({\mathcal {H}}_{T} = {\mathcal {H}} + u_{a}\gamma ^{a}\) is the total Hamiltonian. From the algebra of the constraints and the canonical Hamiltonian \({\mathcal {H}}\), we can obtain the structure functions \(V_{b}^{a}\), \(C_{c}^{a b}\), given by

$$\begin{aligned} \left\{ {\mathcal {H}}, \gamma ^{a}(\mathrm {x})\right\} _{D}= & {} \int d^{2}y\; V_{b}^{a}(x, y) \gamma ^{b}(y), \end{aligned}$$
(51)
$$\begin{aligned} \left\{ \gamma ^{a}(x), \gamma ^{b}(y)\right\} _{D}= & {} \int d^{2}z\; C_{c}^{a b}(x, y, z) \gamma ^{c}(z). \end{aligned}$$
(52)

Using these, the master equation becomes

$$\begin{aligned} \frac{d \epsilon _{a}(x)}{d t}-\int d^{2}y\; \epsilon _{b}(y) V_{a}^{b}(x, y) - \int d^{2}y\; d^{2}z\; \epsilon _{b}(y) \gamma _{c}(z) C_{a}^{c b}(x, y, z) = 0. \end{aligned}$$
(53)

Since the only nonzero structure functions are

$$\begin{aligned} V_{2}^{1}= & {} -\delta ^{2}(x-y) \quad , \quad V_{3}^{2} = -\delta ^{2}(x-y), \end{aligned}$$

with all the \(C_{c}^{a b}=0\). We obtain the following relations between the generators.

$$\begin{aligned} \epsilon _{1}= & {} \ddot{\epsilon }_{3}, \nonumber \\ \epsilon _{2}= & {} -{\dot{\epsilon }}_{3}. \end{aligned}$$
(54)

Therefore, the generator has only one parameter and can be written as

$$\begin{aligned} G=\int d^{2}x\; \left( \delta \ddot{\epsilon }_{3} \gamma ^{1} - \delta {\dot{\epsilon }}_{3} \gamma ^{2} + \delta \epsilon _{3} \gamma ^{3}\right) ; \end{aligned}$$
(55)

using (49) the gauge transformations of the variables are

$$\begin{aligned} \delta A_{0}= & {} \int \delta \epsilon _{2}(y)\left[ \delta ^{2}(x-y)\right] d^{2}y, \nonumber \\ \delta A_{i}= & {} \int \delta \epsilon _{3}(y)\left[ \frac{\partial }{\partial y^{i}} \delta ^{2}(x-y)\right] d^{2}y, \nonumber \\ \delta \pi ^{0}= & {} \int 0 d^{2}y, \nonumber \\ \delta \pi ^{i}= & {} \int \delta \epsilon _{1}(y)\left[ \frac{1}{2m}\epsilon ^{i j}\frac{\partial }{\partial x^{j}}\delta ^{2}(x-y)\right] \nonumber \\&+ \delta \epsilon _{3}(y)\left[ -\frac{\theta }{2}\epsilon ^{i j}\frac{\partial }{\partial x^{j}}\delta ^{2}(x-y) \right. \nonumber \\&\left. - \frac{1}{2m}\epsilon ^{i j}\nabla _{y}^{2}\frac{\partial }{\partial x^{j}} \delta ^{2}(x-y)\right] d^{2}y, \nonumber \\ \delta v_{0}= & {} \int \delta \epsilon _{1}(y)\left[ -\delta ^{2}(x-y)\right] d^{2}y, \nonumber \\ \delta v_{i}= & {} \int \delta \epsilon _{2}(y)\left[ \frac{\partial }{\partial x^{i}} \delta ^{2}(x-y)\right] d^{2}y, \nonumber \\ \delta {\tilde{\pi }}^{0}= & {} \int 0 d^{2}y, \nonumber \\ \delta {\tilde{\pi }}^{i}= & {} \int 0 d^{2}y, \end{aligned}$$
(56)

and by using (54) the following gauge transformations are found

$$\begin{aligned} \delta A_{\mu }= & {} -\partial _{\mu } \delta \epsilon _{3}, \nonumber \\ \delta \pi ^{\mu }= & {} \epsilon ^{0 \mu j}\left( - \frac{\theta }{2} + \frac{1}{2m} - \frac{1}{2m}\nabla ^{2}\right) \partial _{j} \delta \epsilon _{3}, \nonumber \\ \delta v_{\mu }= & {} -\partial _{\mu } \delta {\dot{\epsilon }}_{3}, \nonumber \\ \delta {\tilde{\pi }}^{\mu }= & {} 0. \end{aligned}$$
(57)

By identifying \(\sigma ^{3} = - \epsilon _{3}\), both formalisms agree (see equations (47) and (42)).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escalante, A., Zavala-Pérez, V.A. The Hamilton–Jacobi analysis for higher-order Maxwell–Chern–Simons gauge theory. Eur. Phys. J. Plus 136, 766 (2021). https://doi.org/10.1140/epjp/s13360-021-01762-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01762-9

Navigation