Skip to main content
Log in

Exact solution of the semiconfined harmonic oscillator model with a position-dependent effective mass

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We present a new model of a one-dimensional nonrelativistic canonical quantum harmonic oscillator which is semiconfined. Semiconfinement is achieved by replacing the constant effective mass with a mass that varies with position. The problem is exactly solvable and the analytic expression of the wavefunctions of the stationary states is expressed by means of generalized Laguerre polynomials. Surprisingly, the energy spectrum completely overlaps with the energy spectrum of the standard nonrelativistic canonical quantum harmonic oscillator. In the limit when the semiconfinement parameter a goes to infinity, the wavefunctions also tend to the wavefunction of the standard oscillator in terms of Hermite polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. S.C. Bloch, Introduction to Classical and Quantum Harmonic Oscillators (Wiley, New York, 1997)

    Google Scholar 

  2. L.D. Landau, E.M. Lifshitz, Quantum Mechanics: Non-relativistic Theory (Pergamon Press, Oxford, 1991)

    MATH  Google Scholar 

  3. Y. Ohnuki, S. Kamefuchi, Quantum Field Theory and Parastatistics (Springer, New York, 1982)

    Book  MATH  Google Scholar 

  4. N. Mukunda, E.C.G. Sudarshan, J.K. Sharma, C.L. Mehta, Representations and properties of para-Bose oscillator operators. I. Energy position and momentum eigenstates. J. Math. Phys. 21, 2386 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  5. E.I. Jafarov, S. Lievens, J. Van der Jeugt, The Wigner distribution function for the one-dimensional parabose oscillator. J. Phys. A Math. Theor. 41, 235301 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Y. Saito, Statistical Physics of Crystal Growth (World Scientific, Singapore, 1996)

    Book  Google Scholar 

  7. S. Dost, B. Lent, Single Crystal Growth of Semiconductors from Metallic Solutions (Elsevier, Amsterdam, 2007)

    Google Scholar 

  8. S.M. Sze, Semiconductor Devices: Physics and Technology (Wiley, New York, 2002)

    Google Scholar 

  9. W. Schoutens, Stochastic Processes and Orthogonal Polynomials (Springer, New York, 2000)

    Book  MATH  Google Scholar 

  10. K. Ahn, M.Y. Choi, B. Dai, S. Sohn, B. Yang, Modeling stock return distributions with a quantum harmonic oscillator. Europhys. Lett. 120, 38003 (2017)

    Article  ADS  Google Scholar 

  11. I. Sunagawa, Crystal growth—its significance for modem science and technology and its possible future applications, in Advances in Crystal Growth Research, ed. by K. Sato, Y. Furukawa, K. Nakajima (Elsevier, Amsterdam, 2001), pp. 1–20

    Google Scholar 

  12. K. Datta, Q.D.M. Khosru, III-V tri-gate quantum well MOSFET: quantum ballistic simulation study for 10 nm technology and beyond. Solid-State Electron. 118, 66–77 (2016)

    Article  ADS  Google Scholar 

  13. L. Zhang, H.-J. Xie, Electric field effect on the second-order nonlinear optical properties of parabolic and semiparabolic quantum wells. Phys. Rev. B 68, 235315 (2003)

    Article  ADS  Google Scholar 

  14. R. Koekoek, P.A. Lesky, R.F. Swarttouw, Hypergeometric Orthogonal Polynomials and Their q-Analogues (Springer, Berlin, 2010)

    Book  MATH  Google Scholar 

  15. I. Giaever, Energy gap in superconductors measured by electron tunneling. Phys. Rev. Lett. 5, 147–148 (1960)

    Article  ADS  Google Scholar 

  16. I. Giaever, Electron tunneling between two superconductors. Phys. Rev. Lett. 5, 464–466 (1960)

    Article  ADS  Google Scholar 

  17. W.A. Harrison, Tunneling from an independent-particle point of view. Phys. Rev. 123, 85–89 (1961)

    Article  ADS  Google Scholar 

  18. D.J. BenDaniel, C.B. Duke, Space-charge effects on electron tunneling. Phys. Rev. 152, 683–692 (1966)

    Article  ADS  Google Scholar 

  19. T. Gora, F. Williams, Theory of electronic states and transport in graded mixed semiconductors. Phys. Rev. 177, 1179–1182 (1969)

    Article  ADS  Google Scholar 

  20. Q.-G. Zhu, H. Kroemer, Interface connection rules for effective-mass wave functions at an abrupt heterojunction between two different semiconductors. Phys. Rev. B 27, 3519–3527 (1983)

    Article  ADS  Google Scholar 

  21. O. von Roos, Position-dependent effective masses in semiconductor theory. Phys. Rev. B 27, 7547–7552 (1983)

    Article  ADS  Google Scholar 

  22. A.V. Kolesnikov, A.P. Silin, Quantum mechanics with coordinate-dependent mass. Phys. Rev. B 59, 7596–7599 (1999)

    Article  ADS  Google Scholar 

  23. A.G.M. Schmidt, Time evolution for harmonic oscillators with position-dependent mass. Phys. Scr. 75, 480–483 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  24. H. Hassanabadi, W.S. Chung, S. Zare, M. Alimohammadi, Scattering of position-dependent mass Schrödinger equation with delta potential. Eur. Phys. J. Plus 132, 135 (2017)

    Article  Google Scholar 

  25. J.R. Morris, Short note: Hamiltonian for a particle with position-dependent mass. Quantum Stud. Math. Found. 4, 295–299 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. E.I. Jafarov, S.M. Nagiyev, R. Oste, J. Van der Jeugt, Exact solution of the position-dependent effective mass and angular frequency Schrödinger equation: harmonic oscillator model with quantized confinement parameter. J. Phys. A Math. Theor. 53, 485301 (2020)

    Article  Google Scholar 

  27. O. Mustafa, Position-dependent mass momentum operator and minimal coupling: point canonical transformation and isospectrality. Eur. Phys. J. Plus 134, 228 (2019)

    Article  Google Scholar 

  28. O. Mustafa, S. Habib-Mazharimousavi, Ordering ambiguity revisited via position dependent mass pseudo-momentum operators. Int. J. Theor. Phys. 46, 1786 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. O. Mustafa, Z. Algadhi, Position-dependent mass charged particles in magnetic and Aharonov-Bohm flux fields: separability, exact and conditionally exact solvability. Eur. Phys. J. Plus 135, 559 (2020)

    Article  Google Scholar 

  30. O. Mustafa, Isochronous \(n\)-dimensional nonlinear PDM-oscillators: linearizability, invariance and exact solvability. Eur. Phys. J. Plus 136, 249 (2021)

    Article  Google Scholar 

  31. F.D. Nobre, M.A. Rego-Monteiro, Non-hermitian PT symmetric Hamiltonian with position-dependent masses: associated Schrödinger equation and finite-norm solutions. Braz. J. Phys. 45, 79–88 (2015)

    Article  ADS  Google Scholar 

  32. E.P. Borges, A possible deformed algebra and calculus inspired in nonextensive thermostatistics. Physica A 340, 95–101 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  33. S. Zare, H. Hassanabadi, Properties of quasi-oscillator in position-dependent mass formalism. Adv. High Energy Phys. 2016, 4717012 (2016)

    Article  MATH  Google Scholar 

  34. S. Zare, M. de Montigny, H. Hassanabadi, Investigation of the non-relativistic fermi-gas model by considering the position-dependent mass. J. Korean Phys. Soc. 70, 122–128 (2017)

    Article  ADS  Google Scholar 

  35. H. Hassanabadi, S. Zare, Investigation of quasi-Morse potential in position-dependent mass formalism. Eur. Phys. J. Plus 132, 49 (2017)

    Article  Google Scholar 

  36. H. Hassanabadi, S. Zare, \(\gamma \)-rigid version of Bohr Hamiltonian with the modified Davidson potential in the position-dependent mass formalism. Mod. Phys. Lett. A 32, 1750085 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. N. Jamshir, B. Lari, H. Hassanabadi, The time independent fractional Schrödinger equation with position-dependent mass. Physica A 565, 125616 (2021)

    Article  MathSciNet  Google Scholar 

  38. S.-H. Dong, J.J. Peña, C. Pachego-García, J. García-Ravelo, Algebraic approach to the position-dependent mass Schrödinger equation for a singular oscillator. Mod. Phys. Lett. A 22, 1039–1045 (2007)

    Article  ADS  MATH  Google Scholar 

  39. E. Rosencher, Ph Bois, Model system for optical nonlinearities: asymmetric quantum wells. Phys. Rev. B 44, 11315–11327 (1991)

    Article  ADS  Google Scholar 

  40. L. Zhang, H.J. Xie, Electro-optic effect in a semi-parabolic quantum well with an applied electric field. Mod. Phys. Lett. B 17, 347–354 (2003)

    Article  ADS  MATH  Google Scholar 

  41. L. Zhang, H.J. Xie, Bound states and third-harmonic generation in a semi-parabolic quantum well with an applied electric field. Physica E 22, 791–796 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

E.I. Jafarov kindly acknowledges that this work was supported by the Science Development Foundation under the President of the Republic of Azerbaijan—Grant Nr EIF-KETPL-2-2015-1(25)-56/01/1. J. Van der Jeugt was supported by the EOS Research Project 30889451.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Jafarov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafarov, E.I., Van der Jeugt, J. Exact solution of the semiconfined harmonic oscillator model with a position-dependent effective mass. Eur. Phys. J. Plus 136, 758 (2021). https://doi.org/10.1140/epjp/s13360-021-01742-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01742-z

Navigation