Skip to main content
Log in

Generalized semiconfined harmonic oscillator model with a position-dependent effective mass

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

By using a point canonical transformation starting from the constant-mass Schrödinger equation for the isotonic potential, it is shown that a semiconfined harmonic oscillator model with a position-dependent mass in the BenDaniel–Duke setting and the same spectrum as the standard harmonic oscillator can be easily constructed and extended to a semiconfined shifted harmonic oscillator, which could result from the presence of a uniform gravitational field. A further generalization is proposed by considering a m-dependent position-dependent mass for \(0<m<2\) and deriving the associated semiconfined potential. This results in a family of position-dependent mass and potential pairs, to which the original pair belongs as it corresponds to \(m=1\). Finally, the potential that would result from a general von Roos kinetic energy operator is presented and the examples of the Zhu–Kroemer and Mustafa–Mazharimousavi settings are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Note that we have adopted here units wherein \(\hbar = 2m_0\) in the original paper.

References

  1. G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Editions de Physique, Les Ulis, 1988)

    Google Scholar 

  2. C. Weisbuch, B. Vinter, Quantum Semiconductor Heterostructures (Academic, New York, 1997)

    Google Scholar 

  3. L. Serra, E. Lipparini, Spin response of unpolarized quantum dots. Europhys. Lett. 40, 667 (1997)

    Article  ADS  Google Scholar 

  4. P. Harrison, A. Valavanis, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures (Wiley, Chichester, 2016)

    Book  Google Scholar 

  5. M. Barranco, M. Pi, S.M. Gatica, E.S. Hernández, J. Navarro, Structure and energetics of mixed \(^4\)He-\(^3\)He drops. Phys. Rev. B 56, 8997 (1997)

    Article  ADS  Google Scholar 

  6. M.R. Geller, W. Kohn, Quantum mechanics of electrons in crystals with graded composition. Phys. Rev. Lett. 70, 3103 (1993)

    Article  ADS  Google Scholar 

  7. F. Arias de Saavedra, J. Boronat, A. Polls, A. Fabrocini, Effective mass of one \(^4\)He atom in liquid \(^3\)He. Phys. Rev. B 50, 4248(R) (1994)

    Article  ADS  Google Scholar 

  8. A. Puente, L. Serra, M. Casas, Dipole excitation of Na clusters with a non-local energy density functional. Z. Phys. D 31, 283 (1994)

    Article  ADS  Google Scholar 

  9. P. Ring, P. Schuck, The Nuclear Many Body Problem (Springer, New York, 1980)

    Book  Google Scholar 

  10. D. Bonatsos, P.E. Georgoudis, D. Lenis, N. Minkov, C. Quesne, Bohr Hamiltonian with a deformation-dependent mass term for the Davidson potential. Phys. Rev. C 83, 044321 (2011)

    Article  ADS  Google Scholar 

  11. W. Willatzen, B. Lassen, The BenDaniel-Duke model in general nanowire structures. J. Phys. Condens. Matter 19, 136217 (2007)

    Article  ADS  Google Scholar 

  12. N. Chamel, Effective mass of free neutrons in neutron star crust. Nucl. Phys. A 773, 263 (2006)

    Article  ADS  Google Scholar 

  13. C. Quesne, V.M. Tkachuk, Deformed algebras, position-dependent effective mass and curved spaces: An exactly solvable Coulomb problem. J. Phys. A: Math. Gen. 37, 4267 (2004)

    Article  ADS  Google Scholar 

  14. A. Kempf, Uncertainty relation in quantum mechanics with quantum group symmetry. J. Math. Phys. 35, 4483 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  15. H. Hinrichsen, A. Kempf, Maximal localization in the presence of minimal uncertainties in positions and in momenta. J. Math. Phys. 37, 2121 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  16. E. Witten, Reflections on the fate of spacetime. Phys. Today 49, 24 (1996)

    Article  MathSciNet  Google Scholar 

  17. E. Schrödinger, A method of determining quantum-mechanical eigenvalues and eigenfunctions. Proc. R. Ir. Acad. A46, 9 (1940)

    MathSciNet  MATH  Google Scholar 

  18. E.G. Kalnins, W. Miller Jr., G.S. Pogosyan, Superintegrability and associated polynomial solutions: Euclidean space and the sphere in two dimensions. J. Math. Phys. 37, 6439 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  19. E.G. Kalnins, W. Miller Jr., G.S. Pogosyan, Superintegrability on the two-dimensional hyperboloid. J. Math. Phys. 38, 5416 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  20. C. Quesne, First-order intertwining operators and position-dependent mass Schrödinger equations in \(d\) dimensions. Ann. Phys. NY) 321, 1221 (2006)

    Article  ADS  Google Scholar 

  21. B. Bagchi, P. Gorain, C. Quesne, R. Roychoudhury, A general scheme for the effective-mass Schrödinger equation and the generation of the associated potentials. Mod. Phys. Lett. A 19, 2765 (2004)

    Article  ADS  Google Scholar 

  22. C. Quesne, Point canonical transformation versus deformed shape invariance for position-dependent mass Schrödinger equations. SIGMA 5, 046 (2009)

    MATH  Google Scholar 

  23. C. Quesne, Comment on “Exact solution of the position-dependent effective mass and angular frequency Schrödinger equation: harmonic oscillator model with quantized confinement parameter.” J. Phys. A: Math. Theor. 54, 368001 (2021)

  24. E.I. Jafarov, S.M. Nagiyev, R. Oste, J. Van der Jeugt, Exact solution of the position-dependent effective mass and angular frequency Schrödinger equation: harmonic oscillator model with quantized confinement parameter. J. Phys. A: Math. Theor. 53, 485301 (2020)

    Article  Google Scholar 

  25. E.I. Jafarov, J. Van der Jeugt, Exact solution of the semiconfined harmonic oscillator model with a position-dependent effective mass. Eur. Phys. J. Plus 136, 758 (2021)

    Article  Google Scholar 

  26. Y. Weissman, J. Jortner, The isotonic oscillator. Phys. Lett. A 70, 177 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  27. D. Zhu, A new potential with the spectrum of an isotonic oscillator. J. Phys. A: Math. Gen. 20, 4331 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  28. D.J. BenDaniel, C.B. Duke, Space-charge effects on electron tunneling. Phys. Rev. 152, 683 (1966)

    Article  ADS  Google Scholar 

  29. E.I. Jafarov, S.M. Nagiyev, A.M. Jafarova, Quantum-mechanical explicit solution for the confined harmonic oscillator model with the von Roos kinetic energy operator. Rep. Math. Phys. 86, 25 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  30. E.I. Jafarov, S.M. Nagiyev, Angular part of the Schrödinger equation for the Hautot potential as a harmonic oscillator with a coordinate-dependent mass in a uniform gravitational field. Theor. Math. Phys. 207, 447 (2021)

    Article  Google Scholar 

  31. O. von Roos, Position-dependent effective masses in semiconductor theory. Phys. Rev. B 27, 7547 (1983)

    Article  ADS  Google Scholar 

  32. Q.-G. Zhu, H. Kroemer, Interface connection rules for effective-mass wave functions at an abrupt heterojunction between two different semiconductors. Phys. Rev. B 27, 3519 (1983)

    Article  ADS  Google Scholar 

  33. O. Mustafa, S.H. Mazharimousavi, Ordering ambiguity revisited via position dependent mass pseudo-momentum operators. Int. J. Theor. Phys. 46, 1786 (2007)

    Article  MathSciNet  Google Scholar 

  34. A. de Souza Dutra, C.A.S. Almeida, Exact solvability of potentials with spatially dependent effective masses. Phys. Lett. A 275, 25 (2000)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fonds de la Recherche Scientifique-FNRS under Grant No. 4.45.10.08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Quesne.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quesne, C. Generalized semiconfined harmonic oscillator model with a position-dependent effective mass. Eur. Phys. J. Plus 137, 225 (2022). https://doi.org/10.1140/epjp/s13360-022-02444-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02444-w

Navigation