Skip to main content
Log in

Basic properties of an alternative flow equation in gravity theories

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Basic properties of alternative flow equation in quantum gravity are studied. It is shown that the alternative flow equation for effective two-particle irreducible effective action is gauge independent and does not depend on IR parameter k on shell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Standard examples are Einstein gravity, \(S_0(g)=\kappa ^{-2}\int \mathrm{d}x \sqrt{-\mathrm{det}g}\;R\), and \(R^2\) gravity, \(S_0(g)=\int \mathrm{d}x \sqrt{-\mathrm{det}g}\;(\lambda _1 R^2+ \lambda _2R^{\mu \nu }R_{\mu \nu }+\kappa ^{-2}R)\).

  2. The gravitational BRST transformations were introduced in [20,21,22]. For more compact presentation of the BRST transformations, we use the notation \(\delta _B\) for \(\delta _\mathrm{BRST}\).

  3. For recent development of the background field method see [34].

References

  1. C. Wetterich, Average action and the renormalization group equation. Nucl. Phys. B 352, 529 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  2. C. Wetterich, Exact evolution equation for the effective potential. Phys. Lett. B 301, 90 (1993)

    Article  ADS  Google Scholar 

  3. N. Dupuis, L. Canet, A. Eichhorn, W. Metzner, J.M. Pawlowski, M. Tissier, N. Wschebor. The nonperturbative functional renormalization group and its applications. arXiv:2006.04853 [cond-mat.stat-mech]

  4. P.M. Lavrov, I.L. Shapiro, On the functional renormalization group approach for Yang–Mills fields. JHEP 1306, 086 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  5. P.M. Lavrov, BRST, Ward identities, gauge dependence and FRG. arXiv:2002.05997 [hep-th]

  6. P.M. Lavrov, Gauge dependence of effective average action. Phys. At. Nucl. 83, 1011 (2020)

    Article  Google Scholar 

  7. E. Alexander, P. Millington, J. Nursey, P.M. Safin, An alternative flow equation for the functional renormalization group. Phys. Rev. D 100, 101702 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  8. P.M. Lavrov, Gauge dependence of alternative flow equation for the functional renormalization group. Nucl. Phys. B 957, 115107 (2020)

    Article  MathSciNet  Google Scholar 

  9. J.M. Cornwell, R. Jackiw, E. Tomboulis, Effective action for composite operators. Phys. Rev. D 10, 2428 (1974)

    Article  ADS  Google Scholar 

  10. P.M. Lavrov, S.D. Odintsov, The gauge dependence of the effective action of composite fields in general gauge theories. Sov. J. Nucl. Phys. 50, 332 (1989)

    Google Scholar 

  11. P.M. Lavrov, Effective action for composite fields in gauge theories. Theor. Math. Phys. 82, 282 (1990)

    Article  Google Scholar 

  12. P.M. Lavrov, S.D. Odintsov, A.A. Reshetnyak, Effective action of composite fields for general gauge theories in BLT covariant formalism. J. Math. Phys. 38, 3466 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Reuter, Nonperturbative evolution equation for quantum gravity. Phys. Rev. D 57, 971 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  14. B.S. DeWitt, Dynamical Theory of Groups and Fields (Gordon and Breach, London, 1965)

    MATH  Google Scholar 

  15. V.F. Barra, P.M. Lavrov, E.A. dos Reis, T. de Paula Netto, I.L. Shapiro, Functional renormalization group approach and gauge dependence in gravity theories. Phys. Rev. D 101, 065001 (2020)

  16. L.D. Faddeev, V.N. Popov, Feynman diagrams for the Yang-Mills field. Phys. Lett. B 25, 29 (1967)

    Article  ADS  Google Scholar 

  17. A.O. Barvinsky, D. Blas, M. Herrero-Valea, S.M. Sibiryakov, C.F. Steinwachs, Renormalization of gauge theories in the background-field approach. JHEP 1807, 035 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  18. C. Becchi, A. Rouet, R. Stora, The abelian Higgs Kibble Model, unitarity of the \(S\)-operator. Phys. Lett. B 52, 344 (1974)

    Article  ADS  Google Scholar 

  19. I.V. Tyutin, Gauge invariance in field theory and statistical physics in operator formalism. Lebedev Inst. preprint N 39 (1975)

  20. R. Delbourgo, M. Ramon-Medrano, Supergauge theories and dimensional regularization. Nucl. Phys. 110, 467 (1976)

    Article  ADS  Google Scholar 

  21. K.S. Stelle, Renormalization of higher derivative quantum gravity. Phys. Rev. D 16, 953 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  22. P.K. Townsend, P. van Nieuwenhuizen, BRS gauge and ghost field supersymmetry in gravity and supergravity. Nucl. Phys. B 120, 301 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  23. P.M. Lavrov, A.A. Reshetnyak, One loop effective action for Einstein gravity in special background gauge. Phys. Lett. B 351, 105 (1995)

    Article  ADS  Google Scholar 

  24. R. Jackiw, Functional evaluation of the effective potential. Phys. Rev. D 9, 1686 (1974)

    Article  ADS  Google Scholar 

  25. N.K. Nielsen, On the gauge dependence of spontaneous symmetry breaking in gauge theories. Nucl. Phys. B 101, 173 (1975)

    Article  ADS  Google Scholar 

  26. P.M. Lavrov, I.V. Tyutin, On structure of renormalization in gauge theories. Sov. J. Nucl. Phys. 34, 156 (1981) (Yad. Fiz. 34 (1981) 277)

  27. P.M. Lavrov, I.V. Tyutin, On generating functional Of vertex functions in the Yang-Mills theories. Sov. J. Nucl. Phys. 34, 474 (1981) (Yad. Fiz. 34 (1981) 850)

  28. B.L. Voronov, P.M. Lavrov, I.V. Tyutin, Canonical transformations and the gauge dependence in general gauge theories. Sov. J. Nucl. Phys. 36, 292 (1982) (Yad. Fiz. 36 (1982) 498)

  29. R.E. Kallosh, I.V. Tyutin, The equivalence theorem and gauge invariance in renormalizable theories. Sov. J. Nucl. Phys. 17, 98 (1973) (Yad. Fiz. 17 (1973) 190)

  30. B.S. De Witt, Quantum theory of gravity. II. The manifestly covariant theory. Phys. Rev. 162, 1195 (1967)

  31. I.. Ya.. Arefeva, L.D. Faddeev, A.A. Slavnov, Generating functional for the s matrix in gauge theories. Theor. Math. Phys. 21, 1165 (1975) (Teor. Mat. Fiz. 21 (1974) 311)

  32. L.F. Abbott, The background field method beyond one loop. Nucl. Phys. B 185, 189 (1981)

    Article  ADS  Google Scholar 

  33. P.M. Lavrov, I.L. Shapiro, Gauge invariant renormalizability of quantum gravity. Phys. Rev. D 100, 026018 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  34. B.L. Guacchini, P.M. Lavrov, I.L. Shapiro, Background field method for nonlinear gauges. Phys. Lett. B 797, 134882 (2019)

    Article  MathSciNet  Google Scholar 

  35. P.M. Lavrov, B.S. Merzlikin, Legendre transformations and Clairaut-type equations. Phys. Lett. B 756, 188 (2016)

    Article  ADS  Google Scholar 

  36. T.R. Morris, Quantum gravity, renormalizability and diffeomorphism invariance. SciPost Phys. 5, 040 (2018)

    Article  ADS  Google Scholar 

  37. Y. Igarashi, K. Itoh, T.R. Morris, BRST in the exact renormalization group. Prog. Theor. Exp. Phys. 2019, 103801 (2019)

    Article  Google Scholar 

  38. P.M. Lavrov, RG and BV-formalism. Phys. Lett. B 803, 135314 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work is supported by the Ministry of Education of the Russian Federation, Project FEWF-2020-0003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M. Lavrov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavrov, P.M. Basic properties of an alternative flow equation in gravity theories. Eur. Phys. J. Plus 136, 854 (2021). https://doi.org/10.1140/epjp/s13360-021-01731-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01731-2

Navigation