Skip to main content
Log in

Multiplicative inverse with quantum search algorithm under π/18 phase rotation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A quantum search algorithm with phase shift of π/18 is proposed to find a multiplicative inverse of an equation in an unsorted database. The unitary operator \(Q{\text{ }}\) (\(Q{\text{ = }}I_{t} U^{{ - 1}} I_{0} U\)) is operated repeatedly on the initial state with \(\left\lfloor {9\sqrt {{N \mathord{\left/ {\vphantom {N M}} \right. \kern-\nulldelimiterspace} M}} } \right\rfloor\) times to find a marked item successfully. At least 99.81% of the probability of success could be achieved by this proposed quantum search algorithm with time complexity \(O\left( {\sqrt {{N \mathord{\left/ {\vphantom {N M}} \right. \kern-\nulldelimiterspace} M}} } \right)\). Compared with four typical algorithms, the proposed search algorithm has better performance to find out a match in terms of success probability with the same time complexity \(O\left( {\sqrt {{N \mathord{\left/ {\vphantom {N M}} \right. \kern-\nulldelimiterspace} M}} } \right)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  2. V.E. Korepin, Y. Xu, Quantum search algorithms. Int. J. Mod. Phys. B 31, 5727–5758 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. A. Pathak, Elements of Quantum Computation and Quantum Communication (CRC Press, Taylor and Francis Group, New York, 2013)

    Book  MATH  Google Scholar 

  4. P.W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41, 303–332 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. P.W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in Proceedings of the 35th Annual Symposium on Foundations of Computer Science, Santa Fe, 20–22 Nov., pp 124–134 (1994)

  6. L.K. Grover, A fast quantum mechanical algorithm for database search, in Proceedings of the 28th Annual ACM Symposium on the Theory of Computing, New York, pp 212–219 (1996)

  7. L.K. Grover, Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997)

    Article  ADS  Google Scholar 

  8. C.H. Bennett, E. Bernstein, G. Brassard, U. Vazirani, Strengths and weaknesses of quantum computing. Siam J. Comput. 26, 1510–1523 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Boyer, G. Brassard, P. Høyer, A. Tapp, Tight bounds on quantum searching. Fortsch. Phys. Prog. Phys. 46, 493–505 (1998)

    Article  ADS  Google Scholar 

  10. C. Zalka, Grover’s quantum searching algorithm is optimal. Phys. Rev. A 60, 2746–2751 (1999)

    Article  ADS  Google Scholar 

  11. L.K. Grover, Quantum computers can search rapidly by using almost any transformation. Phys. Rev. Lett. 80, 4329–4332 (1998)

    Article  ADS  Google Scholar 

  12. G.L. Long, Y.S. Li, W.L. Zhang, C.C. Tu, Dominant gate imperfection in Grover’s quantum search algorithm. Phys. Rev. A 61, 042305 (2000)

    Article  ADS  Google Scholar 

  13. D. Biron, O. Biham, E. Biham, M. Grassl, D.A. Lidar, Generalized Grover search algorithm for arbitrary initial amplitude distribution. Phys. Rev. A 60, 2742–2745 (1999)

    Article  ADS  MATH  Google Scholar 

  14. D. Reitzner, D. Nagaj, V. Bužek, Quantum walks. Acta Phys. Slovaca 61, 603–725 (2011)

    ADS  Google Scholar 

  15. T. Tulsi, L.K. Grover, A. Patel, A new algorithm for fixed point quantum search. Quant. Inform. Comput. 6, 483–494 (2006)

    MathSciNet  MATH  Google Scholar 

  16. A. Younes, J. Rowe, J. Miller, Quantum search algorithm with more reliable behaviour using partial diffusion. Quant. Commun. 734, 171–174 (2006)

    Article  MathSciNet  Google Scholar 

  17. L.K. Grover, Fixed-point quantum search. Phys. Rev. Lett. 95, 150501 (2005)

    Article  ADS  MATH  Google Scholar 

  18. H.F. Wang, S. Zhang, Y.F. Zhao, Phase matching in fixed-point quantum search algorithm. Int. J. Quant. Inform. 6, 1269–1275 (2009)

    Article  MATH  Google Scholar 

  19. P.C. Li, S.Y. Li, Phase matching in Grover’s algorithm. Phys. Lett. A 366, 42–46 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. G.L. Long, Y.S. Li, W.L. Zhang, L. Niu, Phase matching in quantum searching. Phys. Lett. A 262, 27–34 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. E. Biham, O. Biham, D. Biron, M. Grassl, D.A. Lidar, D. Shapira, Analysis of generalized Grover’s quantum search algorithms using recursion equations. Phys. Rev. A 63, 5348–5353 (2000)

    Article  Google Scholar 

  22. A.W. Harrow, A. Hassidim, S. Lloyd, Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103, 150502 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  23. K. Srinivasan, B.K. Behera, P.K. Panigrahi, Solving linear systems of equations by gaussian elimination method using Grover's search algorithm: an IBM quantum experience (2017)

  24. X. Tao, S.J. Wei, J.L. Cui, J.X. Xiao, I. Arrazola, L. Lamata, X.Y. Kong, D.W. Lu, E. Solano, G.L. Long, Quantum algorithm for solving linear differential equations: theory and experiment. Phys. Rev. A 101, 032307 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  25. K. Chakraborty, S. Maitra, Application of Grover’s algorithm to check non-resiliency of a Boolean function. Cryptogr. Commun. 8, 401–413 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. H.Y. Tseng, C.W. Tsai, T. Hwang, Controlled deterministic secure quantum communication based on quantum search algorithm. Int. J. Theor. Phys. 51, 2447–2454 (2012)

    Article  MATH  Google Scholar 

  27. R.H. Shi, M. Zhang, Privacy-preserving quantum sealed-bid auction based on Grover’s search algorithm. Sci. Rep. 9, 7626 (2019)

    Article  ADS  Google Scholar 

  28. A.Y. Wei, P. Naik, A.W. Harrow, J. Thaler, Quantum algorithms for jet clustering. Phys. Rev. D 101, 094015 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  29. S. Yamashita, How to utilize a Grover search in general programming. Laser Phys. 16, 730–734 (2006)

    Article  ADS  Google Scholar 

  30. H.F. Wang, S. Zhang, Y.F. Zhao, K.H. Yeon, Quantum mechanical algorithm for solving quadratic residue equation. Int. J. Theor. Phys. 48, 3262–3267 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. D. Reitzner, M. Ziman, Two notes on Grover’s search: programming and discriminating. Eur. Phys. J. Plus 129, 128 (2014)

    Article  Google Scholar 

  32. B. Broda, Quantum search of a real unstructured database. Eur. Phys. J. Plus 131, 38 (2016)

    Article  Google Scholar 

  33. F. Morikoshi, Problem-solution symmetry in Grover’s quantum search algorithm. Int. J. Theor. Phys. 50, 1858–1867 (2011)

    Article  Google Scholar 

  34. N. Bhattacharya, H.B. van Linden van den Heuvell, R.J.C. Spreeuw, Implementation of quantum search algorithm using classical Fourier optics. Phys. Rev. Lett. 88, (2002)

  35. J. Böhm, M. Bellec, F. Mortessagne, U. Kuhl, S. Barkhofen, S. Gehler, H.J. Stockmann, I. Foulger, S. Cnutzmann, G. Tanner, Microwave experiments simulating quantum search and directed transport in artificial grapheme. Phys. Rev. Lett. 114, 110501 (2015)

    Article  ADS  Google Scholar 

  36. I.L. Chuang, N. Gershenfeld, M. Kubinec, Experimental implementation of fast quantum searching. Phys. Rev. Lett. 80, 3408 (1997)

    Article  ADS  Google Scholar 

  37. J.A. Jones, M. Mosca, R.H. Hansen, Implementation of a quantum search algorithm on a quantum computer. Nature 393, 344–346 (1998)

    Article  ADS  Google Scholar 

  38. J.P. Home, D. Hanneke, J.D. Jost, J.M. Amini, D. Leibfried, D.J. Wineland, Complete methods set for scalable ion trap quantum information processing. Science 325, 1227–1230 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. C. Figgatt, D. Maslov, K.A. Landsman, N.M. Linke, S. Debnath, C. Monroe, Complete 3-qubit Grover search on a programmable quantum computer. Nat. Commun. 8, 1918 (2017)

    Article  ADS  Google Scholar 

  40. W.X. Zhang, K.Y. Cheng, C. Wu, Y. Wang, H.Q. Li, X.D. Zhang, Implementing quantum search algorithm with metamaterials. Adv. Mater. 30, 1703986 (2018)

    Article  Google Scholar 

  41. H. Sakhouf, M. Daoud, R.A. Laamara, Implementation of Grover’s search algorithm in the QED circuit for two superconducting qubits. Int. J. Theor. Phys. 59, 3436–3448 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  42. C. Cafaro, S. Mancini, On Grover’s search algorithm from a quantum information geometry viewpoint. Phys. A 391, 1610–1625 (2012)

    Article  MathSciNet  Google Scholar 

  43. C. Cafaro, Geometric algebra and information geometry for quantum computational software. Phys. A 470, 154 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. G. Hardy, E. Wright, An Introduction to the Theory of Numbers, 6th edn. (Oxford University Press, Oxford, 2008)

    MATH  Google Scholar 

  45. X. Li, P.C. Li, A fixed-phase quantum search algorithm with more flexible behavior. J. Quant. Inform. Sci. 2, 28–34 (2012)

    Article  Google Scholar 

  46. Z. Pawlak, Rough sets. Int. J. Comput. Inform. Sci. 11, 341–356 (1982)

    Article  MATH  Google Scholar 

  47. S.J. Hong, Data mining. Fut. Gener. Comput. Syst. 13, 95–97 (1997)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61462061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long-Zhen Duan.

Appendices

Appendix A

In this appendix, Eq. (12) can be deduced. The required number of iterations can be calculated as follows,

$$ R = {\text{CI}}\left( {\frac{{{\pi \mathord{\left/ {\vphantom {\pi {2 - \theta }}} \right. \kern-\nulldelimiterspace} {2 - \theta }}}}{{2\theta }}} \right), $$
(24)

where \({\text{CI}}(x)\) represents the integer closest to x.

Let \(\sin ^{2} \theta = {M \mathord{\left/ {\vphantom {M N}} \right. \kern-\nulldelimiterspace} N} = \lambda\), Eq. (24) becomes

$$ \begin{aligned} R &= {\text{CI}}\left( {\frac{{\arccos \sqrt {{M \mathord{\left/ {\vphantom {M N}} \right. \kern-\nulldelimiterspace} N}} }}{{2\arcsin \sqrt {{M \mathord{\left/ {\vphantom {M N}} \right. \kern-\nulldelimiterspace} N}} }}} \right) \\ & = {\text{CI}}\left( {\frac{{\arccos \sqrt \lambda }}{{2\arcsin \sqrt \lambda }}} \right). \\ \end{aligned} $$
(25)

Equation (24) implies that \({\text{R}} \le \left\lfloor {{\pi \mathord{\left/ {\vphantom {\pi {4\theta }}} \right. \kern-\nulldelimiterspace} {4\theta }}} \right\rfloor\)(26), and assume that \(M \le {N \mathord{\left/ {\vphantom {N 2}} \right. \kern-\nulldelimiterspace} 2}\) for the moment, the following condition would be obtained.

$$ \theta \ge \sin \theta = \sqrt {\frac{M}{N}} . $$
(26)

Combining Eq. (26) with Eq. (27), the upper bound on the number of iteration required is

$$ R \le \left\lfloor {\frac{\pi }{4}\sqrt {\frac{N}{M}} } \right\rfloor . $$
(27)

In conclusion, according to Eqs. (25) and (28), (12)\(R = {\text{CI}}\left( {\frac{{\arccos \sqrt \lambda }}{{2\arcsin \sqrt \lambda }}} \right){\text{ = }}\left\lfloor {\frac{\pi }{4}\sqrt {\frac{N}{M}} } \right\rfloor\) in Sect. 2.1 can be taken.

Appendix B

In this appendix, a derivation is given to Eq. (17) in Sec. 3. By observing that \(M \ll N\), we have \(\sin \theta = \sqrt {{M \mathord{\left/ {\vphantom {M N}} \right. \kern-\nulldelimiterspace} N}} \approx \theta\), and \(\arcsin (\sin ({\phi \mathord{\left/ {\vphantom {\phi 2}} \right. \kern-\nulldelimiterspace} 2})\sin \theta ) \approx \sin ({\phi \mathord{\left/ {\vphantom {\phi 2}} \right. \kern-\nulldelimiterspace} 2})\sin \theta\), so the following form can be taken,

$$ R = \left\lfloor {\frac{\pi }{{4\arcsin (\sin ({\phi \mathord{\left/ {\vphantom {\phi 2}} \right. \kern-\nulldelimiterspace} 2})\sin \theta )}}} \right\rfloor \approx \left\lfloor {\frac{\pi }{{4\sin ({\phi \mathord{\left/ {\vphantom {\phi 2}} \right. \kern-\nulldelimiterspace} 2})\sin \theta }}} \right\rfloor . $$
(28)

when \(\phi = {\pi \mathord{\left/ {\vphantom {\pi {18}}} \right. \kern-\nulldelimiterspace} {18}}\), Eq. (29) becomes

$$ R \approx \left\lfloor {\frac{\pi }{{4\sin ({\phi \mathord{\left/ {\vphantom {\phi 2}} \right. \kern-\nulldelimiterspace} 2})\sin \theta }}} \right\rfloor \approx \left\lfloor {9\sqrt {\frac{N}{M}} } \right\rfloor . $$
(29)

So Eq. (17) can be deduced.

Appendix C

In this appendix, calculation expressions about the success probability and the number of iterations of five algorithmic schemes are shown as follows (Table

Table 2 Calculation expressions of the proposed algorithm with four different algorithms (\(\sin \theta = {M \mathord{\left/ {\vphantom {M N}} \right. \kern-\nulldelimiterspace} N}\))

2).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, YF., Duan, LZ., Qiu, TR. et al. Multiplicative inverse with quantum search algorithm under π/18 phase rotation. Eur. Phys. J. Plus 136, 734 (2021). https://doi.org/10.1140/epjp/s13360-021-01704-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01704-5

Navigation