Skip to main content
Log in

Sub-bosonic (deformed) ladder operators

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The canonical operator \({\hat{a}}^{\dagger }\) (\({\hat{a}}\)) represents the ideal process of adding (subtracting) an exact amount of energy E to (from) a physical system in both elementary quantum mechanics and quantum field theory. This is a “sharp” notion in the sense that no variability around E is possible at the operator level. In this work, we present a class of deformed creation and annihilation operators that originates from a rigorous notion of fuzziness. This leads to deformed, sub-bosonic commutation relations inducing a simple algebraic structure with modified eigenenergies and Fock states. In addition, we investigate possible consequences of the introduced formalism in quantum field theories, as for instance, deviations from linearity in the dispersion relation for free quasibosons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. S. Weinberg, The Quantum Theory of Fields (Cambridge University Press, Cambridge, 1995)

    Book  Google Scholar 

  2. M. Peskin, An Introduction to Quantum Field Theory (CRC Press, Boca Raton, 2018)

    Book  Google Scholar 

  3. S.E. Rugh, H. Zinkernagel, Stud. Philos. Hist. Mod. Phys. 33, 663 (2002)

    Article  Google Scholar 

  4. T. Padmanabhan, Phys. Rep. 380, 235 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  5. A. Kempf, G. Mangano, R.B. Mann, Phys. Rev. D 52, 1108 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  6. A. Kempf, J. Phys. A 30, 2093 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  7. A. Kempf, G. Mangano, Phys. Rev. D 55, 7909 (1997)

    Article  ADS  Google Scholar 

  8. H.S. Green, Phys. Rev. 90, 270 (1953)

    Article  ADS  MathSciNet  Google Scholar 

  9. M. Hawton, D. Nelson, Phys. Rev. B 57, 4000 (1998)

    Article  ADS  Google Scholar 

  10. A.J. Macfarlane, J. Phys. A Math. Gen. 22, 4581 (1989)

    Article  ADS  Google Scholar 

  11. L.C. Biendenharn, J. Phys. A Math. Gen. 22, L873 (1989)

    Article  ADS  Google Scholar 

  12. C.-P. Sun, H.-C. Fu, J. Phys. A Math. Gen. 22, L983 (1989)

    Article  Google Scholar 

  13. R.N. Costa Filho, M.P. Almeida, G.A. Farias, G.S. Andrade Jr., Phys. Rev A 84, 050102 (2011)

    Article  ADS  Google Scholar 

  14. R.N. Costa Filho, G. Alencar, B.S. Skagerstam, G.S. Andrade Jr., EPL 101, 10009 (2013)

    Article  ADS  Google Scholar 

  15. F. Parisio, M.A.M. de Aguiar, Phys. Rev. A 68, 062112 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  16. E.P. Wigner, Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra (Academic Press, New York, 1959)

    MATH  Google Scholar 

  17. V. Potocek, S.M. Barnett, Phys. Scr. 90, 065208 (2015)

    Article  ADS  Google Scholar 

  18. R. Román-Ancheyta, J. Récamier, Adv. Quant. Chem. 71, 299 (2015)

    Article  Google Scholar 

  19. J.R. Klauder, B. Skagerstam, Coherent States: Applications in Physics and Mathematical Physics (World Scientific, Singapore, 1985)

    Book  Google Scholar 

  20. A. Perelomov, Generalized Coherent States and Their Applications (Springer, Berlin, 1986)

    Book  Google Scholar 

Download references

Acknowledgements

The authors thank Azadeh Mohammadi, Bruno Cunha, and Carlos Batista for their comments on an early version of this work. This research received financial support from the Brazilian agencies Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE), and Conselho Nacional de Desenvolvimento Científico e Tecnológico through its program CNPq INCT-IQ (Grant 465469/2014-0). R.X. is also supported by the U.S. Department of Energy under the contract DE-SC0017647.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Parisio.

Appendix: Complex integration

Appendix: Complex integration

In this appendix, we evaluate the functional

$$\begin{aligned} I_{k}[f']=\int ^{\infty }_{-\infty }\frac{x^k f'(x)}{\sqrt{x+1}} {\mathrm{d}}{x}. \end{aligned}$$
(41)

With the substitution \(x+1 \rightarrow x\), we get

$$\begin{aligned} I_{k}[f']=\int ^{\infty }_{-\infty }\frac{(x-1)^k f'(x-1)}{\sqrt{x}}=\int ^{\infty }_{-\infty }\frac{g_{k}(x)}{\sqrt{x}} {\mathrm{d}}{x}. \end{aligned}$$
(42)

where \(g_{k}(x)=(x-1)^k f'(x-1)\). We start by considering the following integration in the complex plane

$$\begin{aligned} I^{\gamma }_{k}[g]=\int _{\gamma }\frac{g_{k}(z)}{\sqrt{z}} {\mathrm{d}}{z}. \end{aligned}$$
(43)

Note that \(\sqrt{z}\) has branch points at zero and at infinity. For the remainder of this appendix, we will work with the branch cut connecting these two branch points through the negative imaginary axis, that is, we restrict ourselves to \(\theta \in [e^{\pi i/2},e^{3 \pi i/2})\). We will assume the following condition on the function \(g_{k}(z)\):

  • Condition (i): \(g_{k}(z)\) is analytic in \(\mathrm{H} \cup {\mathbb {R}}\), except for a finite number of removable singularities (poles) in \(\mathrm{H}\). Here, \(\mathrm{H}\equiv \left\{ z\in {\mathbb {C}} ~|~ \mathfrak {I}{(z)}> 0 \right\} \) is the upper-half of the complex plane.

Given that this condition is satisfied, let us evaluate expression (43) on the path \(\gamma \) defined as

$$\begin{aligned} \gamma =\gamma _{-}+\gamma _{\varepsilon }+\gamma _{+}+\gamma _{R}, \end{aligned}$$
(44)

with the following parametrizations:

$$\begin{aligned} \gamma _{-}(r)&=re^{i\pi }, ~ r \in (R,\varepsilon ], \quad \gamma _{\varepsilon }(\theta )=\varepsilon e^{i\theta }, ~ \theta \in [0,\pi ], \\ \gamma _{+}(r)&=r,~ r \in [\varepsilon ,R),~~~~ \quad \gamma _{R}(\theta )=Re^{i \theta }, ~ \theta \in [\pi , 0], \end{aligned}$$

where we will take the limits \(R \rightarrow \infty \) and \(\varepsilon \rightarrow 0\). Let us now evaluate each of the integrals

$$\begin{aligned} I^{{\gamma _{-}}}_k[g]=&\,\int _{\gamma _{-}}\frac{g_{k}(z)}{\sqrt{z}} {\mathrm{d}}{z}= \lim _{\begin{array}{c} \varepsilon \rightarrow 0 \\ R \rightarrow \infty \end{array}}\int ^{\varepsilon }_{R}\frac{g_{k}(-r)}{\sqrt{re^{i\pi }}} {\mathrm{d}}{(-r)}\nonumber \\ =&\,\int ^{0}_{\infty }\frac{g_{k}(-r)}{\sqrt{-r}} {\mathrm{d}}{(-r)}\underset{(-r) \rightarrow x}{=} \int ^{0}_{-\infty }\frac{g_{k}(x)}{\sqrt{x}} {\mathrm{d}}{x} \end{aligned}$$
(45)
$$\begin{aligned} I^{\gamma _{+}}_k[g]=&\,\int _{\gamma _{+}}\frac{g_{k}(z)}{\sqrt{z}} {\mathrm{d}}{z}= \lim _{\begin{array}{c} \varepsilon \rightarrow 0 \\ R \rightarrow \infty \end{array}}\int ^{R}_{\varepsilon }\frac{g_{k}(r)}{\sqrt{r}} {\mathrm{d}}{r}\nonumber \\ \underset{r \rightarrow x}{=}&\, \int ^{\infty }_{0}\frac{g_{k}(x)}{\sqrt{x}} {\mathrm{d}}{x} \end{aligned}$$
(46)
$$\begin{aligned} I^{\gamma _{R}}_k[g]=&\,\int _{\gamma _{R}}\frac{g_{k}(z)}{\sqrt{z}} {\mathrm{d}}{z}= \lim _{\begin{array}{c} R \rightarrow \infty \end{array}}\int _{\gamma _{R}}\frac{g_{k}(Re^{i\theta })}{\sqrt{Re^{i\theta }}} {\mathrm{d}}{(R e^{i\theta })}\nonumber \\ =&\,\lim _{\begin{array}{c} R \rightarrow \infty \end{array}}i\int ^{\pi }_{0}\frac{g_{k}(Re^{i\theta })}{\sqrt{e^{i\theta }}} R^{1/2}{\mathrm{d}}{\theta } \end{aligned}$$
(47)
$$\begin{aligned} I^{\gamma _{\varepsilon }}_k[g]=&\,\int _{\gamma _{\varepsilon }}\frac{g_{k}(z)}{\sqrt{z}} {\mathrm{d}}{z}= \lim _{\begin{array}{c} \varepsilon \rightarrow 0 \end{array}}\int ^{0}_{\pi }\frac{g_{k}(\varepsilon e^{i\theta })}{\sqrt{\varepsilon e^{i\theta }}} {\mathrm{d}}{(\varepsilon e^{i\theta })}\nonumber \\ =&\,\lim _{\begin{array}{c} \varepsilon \rightarrow 0 \end{array}}i\int ^{\pi }_{0}\frac{g_{k}(Re^{i\theta })}{\sqrt{e^{i\theta }}} \varepsilon ^{1/2}{\mathrm{d}}{\theta }. \end{aligned}$$
(48)

Now, we also need to assume the following condition on g(z):

  • Condition (ii): We associate with \(g_{k}(z)\) the coefficients \(\alpha ,\beta \) defined as

    $$\begin{aligned} g_{k}\big (Re^{i\theta }\big ) \underset{R \rightarrow \infty }{\sim } R^\alpha , \quad \text {and} \quad g_{k}\big (\varepsilon e^{i\theta }\big ) \underset{\varepsilon \rightarrow 0}{\sim } \varepsilon ^\beta . \end{aligned}$$
    (49)

    These coefficients must be such that \(\alpha <-1/2\) and \(\beta >-1/2\).

If condition (ii) is satisfied, we can set

$$\begin{aligned} I^{\gamma _{R}}_k [g]\underset{R \rightarrow \infty }{\rightarrow } 0, \quad \text {and} \quad I^{\gamma _{\varepsilon }}_{k}[g]\underset{\varepsilon \rightarrow 0}{\rightarrow } 0. \end{aligned}$$
(50)

Combining these results, Eq. (43) gives

$$\begin{aligned} I^{\gamma }_{k}[g]=I^{\gamma _{-}}_k[g]+I^{\gamma _{\varepsilon }}_{k}[g]+I^{\gamma _{+}}_{k}[g]+I^{\gamma _{R}}_{k}[g]=\int ^{\infty }_{-\infty }\frac{g_{k}(x)}{\sqrt{x}} {\mathrm{d}}{(x)}. \end{aligned}$$
(51)

However, we can also apply the residue theorem to Eq. (43):

$$\begin{aligned} I^{\gamma }_{k}[g]=2 \pi i \sum _{a \in H}\underset{z=a}{{\text {Res}}}g(z). \end{aligned}$$
(52)

Hence, equating Eqs. (51) and (52), we get

$$\begin{aligned} \int ^{\infty }_{-\infty }\frac{g_{k}(x)}{\sqrt{x}} {\mathrm{d}}{x}=2 \pi i \sum _{a \in H}\underset{z=a}{{\text {Res}}}~\frac{g_{k}(z)}{\sqrt{z}}, \end{aligned}$$
(53)

which ends the Proof of Proposition 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serafim, J.D., Ximenes, R. & Parisio, F. Sub-bosonic (deformed) ladder operators. Eur. Phys. J. Plus 136, 686 (2021). https://doi.org/10.1140/epjp/s13360-021-01670-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01670-y

Navigation