Skip to main content

Advertisement

Log in

An eco-friendly, biocompatible and reliable piezoelectric nanocomposite actuator for the new generation of microelectronic devices

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this work, a lead-free piezoelectric nanocomposite material is proposed to be used as an actuator for electronic devices in microscales. Specifically, the use of the novel nanocomposite is examined as a micropump actuator with insulin delivery applications for individuals suffering from diabetes. This novel actuator replaces both the passive substrate and the active layer of traditional diaphragms. The active layer in traditional micropumps usually uses a piezoelectric lead zirconate titanate (PZT) layer due to its strong and desirable properties. PZT contains lead, which is toxic and environmentally hazardous. It is therefore desirable to use lead-free materials. The proposed nanocomposite material contains barium titanate (BaTiO3) nanoparticles, as a lead-free piezoelectric material, embedded in a piezoelectric polymeric matrix of polyvinylidene fluoride (PVDF). The active nanocomposite’s electromechanical properties were estimated using Eshelby’s approach. This actuator has been developed and tested with COMSOL Multiphysics, meeting requirements needed for an insulin micropump. The proposed micropump meets the requirements for insulin delivery including a flow rate of 0.1–20 µL/min and a backpressure of greater than 9.8 kPa. Moreover, a comprehensive study on the static, free vibration, and dynamic behavior of the proposed diaphragm has been performed. This work shows that a BaTiO3/PVDF nanocomposite actuator is able to provide means of actuating an insulin delivery micropump. This nanocomposite can be an alternative to traditional lead-containing actuators. The lead-free actuator is also eco-friendly and bio-compatible, which are important considerations when designing a safe and sustainable micropump, especially for medical applications.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. P.K. Das, A.T. Hasan, Mechanical micropumps and their applications: a review, in AIP Conference Proceedings, vol. 1851, p. 020110 (2017)

  2. D.J. Laser, J.G. Santiago, A review of micropumps. J. Micromech. Microeng. 14, R35–R36 (2004)

    Article  Google Scholar 

  3. S. Mohith, P. Karanth, S. Kulkarni, Recent trends in mechanical micropumps and their applications: a review. Mechatronics 60, 34–55 (2019)

    Article  Google Scholar 

  4. Y.-N. Wang, L.-M. Fu, Micropumps and biomedical applications—a review. Microelectron. Eng. 195, 121–138 (2018)

    Article  Google Scholar 

  5. B. McAdams, A. Rizvi, An overview of insulin pumps and glucose sensors for the generalist. J. Clin. Med. 5(1), 5 (2016)

    Article  Google Scholar 

  6. M.W. Ashraf, S. Tayyaba, N. Afzulpurkar, Micro electromechanical systems (MEMS) based microfluidic devices for biomedical applications. Int. J. Mol. Sci. 12(6), 3648–3704 (2011)

    Article  Google Scholar 

  7. B.D. Iverson, S.V. Garimella, Recent advances in microscale pumping technologies: a review. Microfluid. Nanofluid. 5(2), 145–174 (2008)

    Article  Google Scholar 

  8. R. Moradi-Dastjerdi, S.A. Meguid, S. Rashahmadi, Electro-dynamic analysis of smart nanoclay-reinforced plates with integrated piezoelectric layers. Appl. Math. Model. 75, 267–278 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Moradi-Dastjerdi, S. Rashahmadi, S.A. Meguid, Electro-mechanical performance of smart piezoelectric nanocomposite plates reinforced by zinc oxide and gallium nitride nanowires, in Mechanics Based Design of Structures and Machines, pp. 1–14 (2020).

  10. R. Moradi-Dastjerdi, S. Meguid, S. Rashahmadi, Dynamic behavior of novel micro fuel pump using zinc oxide nanocomposite diaphragm. Sens. Actuators A Phys. 297, 111528 (2019)

    Article  Google Scholar 

  11. N.-T. Nguyen, X. Huang, T.K. Chuan, MEMS-micropumps: a review. J. Fluids Eng. 124(2), 384–392 (2002)

    Article  Google Scholar 

  12. M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, A. Rosetti, J. Rodel, BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives. Appl. Phys. Rev. 4, 4 (2017)

    Article  Google Scholar 

  13. S. Shao, J. Zhang, Z. Zhang, P. Zheng, M. Zhao, J. Li, C. Wang, High piezoelectric properties and domain configuration in BaTiO3 ceramics obtained through the solid-state reaction route. J. Phys. D Appl. Phys. 42, 18 (2009)

    Article  Google Scholar 

  14. P. Praveen, K. Kumar, T. Jayaraman, A. James, D. Das, Synthesis and characterization of pb free piezoelectric ceramics–barium zirconate titanate–barium calcium titanate, in TMS (The Minerals, Metals & Materials Society) (San Antonio, 2013).

  15. R. Moradi-Dastjerdi, K. Behdinan, Dynamic performance of piezoelectric energy harvesters with a multifunctional nanocomposite substrate. Appl. Energy 293, 116947 (2021)

    Article  Google Scholar 

  16. G. Liu, C. Shen, Z. Yang, X. Cai, H. Zhang, A disposable piezoelectric micropump with high performance for closed-loop insulin therapy system. Sens. Actuators A 163(1), 291–296 (2010)

    Article  Google Scholar 

  17. G. Liu et al., A low cost, high performance insulin delivery system based on PZT actuation. Microsyst. Technol. 20(12), 2287–2294 (2014)

    Article  Google Scholar 

  18. G. Aleppo, Insulin Pump Overview, in EndocrineWeb (2019)

  19. C.A. Jung, S.J. Lee, Design of automatic insulin injection system with Continuous Glucose Monitoring (CGM) signals, in IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), 2016.

  20. M. Lipman, E. Schiffrin, What is the ideal blood pressure goal for patients with diabetes mellitus and nephropathy? Curr. Cardiol. Rep. 14(6), 651–659 (2012)

    Article  Google Scholar 

  21. Common Insulin Pump Features. Waltzing the Dragon, 2020. [Online]. https://www.waltzingthedragon.ca/diabetes/insulin-pumps-cgm/choosing-insulin-pump-common-insulin-pump-features/. Accessed 29 Sept 2020

  22. S. Borot et al., Accuracy of a new patch pump based on a microelectromechanical system (MEMS) compared to other commercially available insulin pumps. J. Diabetes Sci. Technol. 8(6), 1133–1141 (2014)

    Article  Google Scholar 

  23. D.G. Johnson, D.A. Borkholder, Towards an implantable, low flow micropump that uses no power in the blocked-flow state. Micromachines 7, 6 (2018)

    Google Scholar 

  24. N.A. Hamid, B.Y. Majlis, J. Yunas, A.R. Syafeeza, Y.C. Wong, M. Ibrahim, A stack bonded thermo-pneumatic micro-pump utilizing polyimide based actuator membrane for biomedical applications. Microsyst. Technol. 23, 4037–4043 (2017)

    Article  Google Scholar 

  25. A. Ehsani, A. Nejat, Conceptual design and performance analysis of a novel flexible-valve micropump using magneto-fluid–solid interaction. Smart Mater. Struct. 26, 055036 (2017)

    Article  ADS  Google Scholar 

  26. P.-H. Cazorla, O. Fuchs, M. Cochet, S. Maubert, G. Le. Rhun, Y. Fouillet, E. Defay, A low voltage silicon micro-pump based on piezoelectric thin films. Sens. Actuators A 250, 35–39 (2016)

    Article  Google Scholar 

  27. T. Zhang, Q.-M. Wang, Valveless piezoelectric micropump for fuel delivery in. J. Power Sources 140(1), 72–80 (2005)

    Article  ADS  Google Scholar 

  28. Y. Tang, M. Jia, X. Ding, Z. Li, Z. Wan, Q. Lin, T. Fu, Experimental investigation on thermal management performance of an integrated heat sink with a piezoelectric micropump. Appl. Therm. Eng. 161 (2019).

  29. X.Y. Wang, Y.T. Ma, G.Y. Yan, D. Huang, Z.H. Feng, High flow-rate piezoelectric micropump with two fixed ends polydimethylsiloxane valves and compressible spaces. Sens. Actuators A 218, 94–104 (2014)

    Article  Google Scholar 

  30. H.-K. Ma, W.-F. Luo, J.-Y. Lin, Development of a piezoelectric micropump with novel separable design for medical applications. Sens. Actuators A 236, 57–66 (2015)

    Article  Google Scholar 

  31. K. Junwu, Y. Zhigang, P. Taijiang, C. Guangming, W. Boda, Design and test of a high-performance piezoelectric micropump for drug delivery. Sens. Actuators A 121, 156161 (2005)

    Article  Google Scholar 

  32. E. Stemme, G. Stemme, A valveless diffuser/nozzle-based fluid pump. Sens. Actuators 39(2), 159–167 (1993)

    Article  Google Scholar 

  33. L.-S. Jang, W.-H. Kan, Peristaltic piezoelectric micropump system for biomedical applications. Biomed Microdevices 9, 619–626 (2007)

    Article  Google Scholar 

  34. A. Azarbegan, C.A. Cortes-Quiroz, I. Eames, M. Zangeneh, Analysis of double-chamber parallel valveless micropumps. Microfluid Nanofluid 9, 171–180 (2010)

    Article  Google Scholar 

  35. C.-W. Huang, S.-B. Huang, G.-B. Lee, Pneumatic micropumps with serially connected actuation chambers. J. Micromech. Microeng. 16, 2265–2272 (2006)

    Article  ADS  Google Scholar 

  36. D. Zhao, L.-P. He, W. Li, Y. Huang, G.-M. Cheng, Experimental analysis of a valve-less piezoelectric micropump with crescent-shaped structure. J. Micromech. Microeng. 29, 105004 (2019)

    Article  ADS  Google Scholar 

  37. J.S. Dong, R.G. Liu, W.S. Liu, Q.Q. Chen, Y. Yang, Y. Wu, Z.G. Yang, B.S. Lin, Design of a piezoelectric pump with dual vibrators. Sens. Actuators A 257, 165–172 (2017)

    Article  Google Scholar 

  38. A.S. Faghidian, Higher–order nonlocal gradient elasticity: a consistent variational theory. Int. J. Eng. Sci. 154, 103337 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  39. A. S. Faghidian 2014 A smoothed inverse eigenstrain method for reconstruction of the regularized residual fields. Int. J. Solids Struct. 51, 4427–4434 (2014)

    Article  Google Scholar 

  40. R. Barretta, A.S. Faghidian, F. Marotti de Sciarra, F.P. Pinnola, Timoshenko nonlocal strain gradient nanobeams: variational consistency, exact solutions and carbon nanotube Young moduli. Mech. Adv. Mater. Struct. 13(11), 1–14 (2019)

    Google Scholar 

  41. A. S. Faghidian, Inverse determination of the regularized residual stress and eigenstrain fields due to surface peening. J. Strain Anal. Eng. Des. 50(2), 84–91 (2015)

    Article  Google Scholar 

  42. R.S. Sabry, A.D. Hussein, PVDF: ZnO/BaTiO3 as high out-put piezoelectric nanogenerator. Polym. Test. 79, 106001 (2019)

    Article  Google Scholar 

  43. U. Yaqoob, A. Uddin, G.-S. Chung, A novel tri-layer flexible piezoelectric nanogenerator based on surface-modified graphene and PVDF-BaTiO3 nanocomposites. Appl. Surf. Sci. 405, 420–426 (2017)

    Article  ADS  Google Scholar 

  44. R. Moradi-Dastjerdi, K. Behdinan, Free vibration response of smart sandwich plates with porous CNT-reinforced and piezoelectric layers. Appl. Math. Model. 96, 66–79 (2021)

    Article  MathSciNet  Google Scholar 

  45. Y. Heidari, M. Arefi, M.I. Rahaghi, Effect of distributed piezoelectric segments on the buckling load of FG cylindrical micro/nano shell. Eur. Phys. J. Plus 136, 74 (2021)

    Article  Google Scholar 

  46. Y. Yang, Y. Dong, Y. Li, Buckling of piezoelectric sandwich microplates with arbitrary in-plane BCs rested on foundation: effect of hygro-thermo-electro-elastic field. Eur. Phys. J. Plus 135, 61 (2020)

    Article  ADS  Google Scholar 

  47. A.K. Singh, S. Koley, A. Negi, A. Ray, In the dynamic behavior of a functionally graded viscoelastic-piezoelectric composite substrate subjected to a moving line load. Eur. Phys. J. Plus 134, 95 (2019)

    Article  Google Scholar 

  48. L. Aichun, K. Kiani, Bilaterally flexural vibrations and instabilities of moving piezoelectric nanowires with surface effect. Eur. Phys. J. Plus 135, 191 (2020)

    Article  ADS  Google Scholar 

  49. P. Tan, L. Tong, Micro-electromechanics models for piezoelectric-fiber-reinforced composite materials. Compos. Sci. Technol. 61(5), 759–769 (2001)

    Article  Google Scholar 

  50. Y. Gao, Z.L. Wang, Electrostatic potential in a bent piezoelectric nanowire. the fundamental theory of nanogenerator and nanopiezotronics. Nano Lett. 7(8), 2499–2505 (2007)

    Article  ADS  Google Scholar 

  51. K. Momeni, G.M. Odegard, R.S. Yassar, Nanocomposite electrical generator based on piezoelectric zinc oxide nanowires. J. Appl. Phys. 108, 114303 (2010)

    Article  ADS  Google Scholar 

  52. K. Ip, S.J. Pearton, D.P. Norton, F. Ren, Chapter 9—advances in processing of ZnO, in Zinc Oxide Bulk, Thin Films and Nanostructures, pp. 313–338 (2006)

  53. A. Yasmin, J.J. Luo, J.L. Abot, I.M. Daniel, Mechanical and thermal behavior of clay/epoxy nanocomposites. Compos. Sci. Technol. 66(14), 2415–2422 (2006)

    Article  Google Scholar 

  54. H. Berger, S. Kari, U. Gabbert, R. Rodriguez-Ramos, R. Guinovart, J.A. Otero, J. Bravo-Castillero, An analytical and numerical approach for calculating effective material coefficients of piezoelectric fiber composites. Int. J. Solids Struct. 42(21–22), 5692–5714 (2005)

    Article  MATH  Google Scholar 

  55. A.C. Dent, C.R. Bowen, R. Stevens, M.G. Cain, M. Stewart, Effective elastic properties for unpoled barium titanate. J. Eur. Ceram. Soc. 27(13–15), 3739–3743 (2007)

    Article  Google Scholar 

  56. J. Gao, D. Xue, W. Liu, C. Zhou, X. Ren, Recent progress on BaTiO3-based piezoelectric ceramics for actuator applications. Electrochem. Electromech. Actuators 6, 24 (2017)

    Google Scholar 

  57. J.A. Krishnaswamy, F.C. Buroni, E. García-Macías, R. Melnik, L. Rodriguez-Tembleque, A. Saez, Design of lead-free PVDF/CNT/BaTiO3 piezocomposites for sensing and energy harvesting: the role of polycrystallinity, nanoadditives, and anisotropy. Smart Mater. Struct. 29, 1 (2019)

    Google Scholar 

  58. G.M. Odegard, Constitutive modeling of piezoelectric polymer composites. Acta Mater. 52, 5315–5330 (2004)

    Article  ADS  Google Scholar 

  59. J.H. Huang, J.S. Yu, Electroelastic Eshelby tensors for an ellipsoidal piezoelectric inclusion. Compos. Eng. 4(11), 1169–1182 (1994)

    Article  Google Scholar 

  60. S.V. Glushanin, V.Y. Topolov, A.V. Krivoruchko, Features of piezoelectric properties of 0–3 PbTiO3-type. Mater. Chem. Phys. 97, 357–364 (2005)

    Article  Google Scholar 

  61. V.Y. Topolov, C.R. Bowen, in Electromechanical Properties in Composites Based on Ferroelectrics (Springer, London, 2009), pp. 64–-65

  62. R. Moradi-Dastjerdi, S. Meguid, S. Rashahmadi, Dynamic behavior of novel nanocomposite diaphragm in piezoelectrically-actuated micropump. Smart Mater. Struct 28, 105022 (2019)

    Article  ADS  Google Scholar 

  63. R. Moradi-Dastjerdi, K. Behdinan, B. Safaei, Z. Qin, Static performance of agglomerated CNT-reinforced porous plates bonded with piezoceramic faces. Int. J. Mech. Sci. 188, 105966 (2020)

    Article  Google Scholar 

  64. S. Li, S. Chen, Analytical analysis of a circular PZT actuator for valveless micropumps. Sens. Actuators A 104, 151–161 (2003)

    Article  Google Scholar 

  65. G.R. Doyle, J.A. McCutcheon, 8.3 IV fluids, IV tubing, and assessment of an IV system, in Clinical Procedures for Safer Patient Care (Victoria, British Columbia Institute of Technology (BCIT), pp. 479–485 (2015)

Download references

Acknowledgements

The work described in this paper was supported by Natural Sciences and Engineering Research Council of Canada (NSERC under grant RGPIN-217525). The authors are grateful for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasool Moradi-Dastjerdi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angelou, A., Norman, C., Miran, N. et al. An eco-friendly, biocompatible and reliable piezoelectric nanocomposite actuator for the new generation of microelectronic devices. Eur. Phys. J. Plus 136, 678 (2021). https://doi.org/10.1140/epjp/s13360-021-01653-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01653-z

Navigation