Skip to main content
Log in

Thermoelastic wave propagation in a piezoelectric layered half-space within the dual-phase-lag model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We investigate linear, thermoelastic wave propagation in a layered piezoelectric material composed of a slab bonded to a half-space substrate of a dissimilar material, within dual-phase-lag model and under thermomechanical loads. One of the aims of the present work is to formulate a set of boundary conditions that is compatible with the field equations. Normal mode technique is used to obtain a solution to the considered problem. The model allows for a jump in temperature at the interface, and this can be used to evaluate a material constant of the slab. It turns out, particularly, that a normal electric field is generated outside the structure. Numerical results for all quantities of practical interest are obtained and discussed. A relation between the jump in temperature and the slab thickness is given. These results may be useful in determining the values of the material constants of the slab, in particular the thermal relaxation times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. E. Moshtagh, E. Pan, M. Eskandari-Ghadi, Shear excitation of a multilayered magneto-electro-elastic half-space considering a vast frequency content. Int. J. Eng. Sci. 123, 214–235 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. M.H. Ghayesh, A. Farajpour, A review on the mechanics of functionally graded nanoscale and microscale structures. Int. J. Eng. Sci. 137, 8–36 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. K.L. Verma, On the propagation of waves in layered anisotropic media in generalized thermoelasticity. Int. J. Eng. Sci. 40, 2077–2096 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Yu, B. Wu, C. He, Guided thermoelastic wave propagation in layered plates without energy dissipation. Acta Mech. Solid. Sin. 24(2), 135–143 (2011)

    Article  Google Scholar 

  5. N.A. Ispulov, A. Qadir, M. Zhukenov, E. Arinov, The propagation of thermoelastic waves in anisotropic media of orthorhombic, hexagonal, and tetragonal syngonies. Adv. Mathl. Phys. 2017, Art. ID 4898467, 1–9 (2017)

  6. A. Sur, M. Kanoria, Thermoelastic interaction in a three-dimensional layered sandwich structure. Mech. Adv. Compos. Struct. 5, 187–198 (2018)

    Google Scholar 

  7. A. Mandi, S. Kundu, P. Pati, P.C. Pal, An analytical study on the Rayleigh wave generation in a stratified structure. Appl. Math. Mech.-Engl. Ed. 41(7), 1039–1054 (2020)

    Article  MATH  Google Scholar 

  8. Z.Y. Zhi Yong Ai, Z.K. Ye, J.J. Yang, Thermo-mechanical behaviour of multi-layered media based on the Lord-Shulman model. Comput. Geotech. 129, Art. ID 103897, 1–14 (2021)

  9. P. Pai Peng, C. Qiu, Z. Liu, Y. Wu, Controlling elastic waves with small phononic crystals containing rigid inclusions. EPL (Europhys. Lett.) 106, Art. ID 46003, 1–5 (2014)

  10. Z. Zhang, X.K. Han, G.M. Ji, Mechanism for controlling the band gap and the flat band in three-component phononic crystals. J. Phys. Chem. Solids 123, 235–241 (2018)

    Article  ADS  Google Scholar 

  11. J.N. Sharma, K.K. Sharma, A. Kumar, Surface waves in a piezoelectric-semiconductor composite structure. Int. J. Solids Struct. 47, 816–826 (2010)

    Article  MATH  Google Scholar 

  12. Y.-J. Kim, J.Y. Cha, H. Ham, H. Huh, D.-S. So, I. Kang, I. Preparation of piezoresistive nano smart hybrid material based on graphene. Current Appl. Phys. 11, 1, Supplement, January 2011, S350–S352 (2011)

  13. E. Bassiouny, Thermo-elastic behavior of thin sandwich panel made of piezoelectric layers. Appl. Math. Comput. 218, 10009–10021 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. S.I. Fomenko, M.V. Golub, T.Q. Bui, Ch. Zhang, Y.-S. Wang, In-plane elastic wave propagation and band-gaps in layered functionally graded phononic crystals. Int. J. Solids Struct. 51(13), 2491–2503 (2014)

    Article  Google Scholar 

  15. S. Nemat-Nasser, H. Sadeghi, A.V. Amirkhizi, A. Srivastav, Phononic layered composites for stress-wave attenuation. Mech. Res. Commun. 68, 65–69 (2015)

    Article  Google Scholar 

  16. S.Q. Zhang, Y.X. Li, R. Schmidt, Modeling and simulation of macro-fiber composite layered smart structures. Compos. Struct. 126, 89–100 (2015). https://doi.org/10.1016/j.compstruct.2015.02.051

    Article  Google Scholar 

  17. Y. Liu, D. Zhang, K. Wang, Y. Liu, Y. Shang, A novel strain sensor based on graphene composite films with layered structure. Compos. Part A Appl. Sci. Manuf. 80, 95–103 (2016). https://doi.org/10.1016/j.compositesa.2015.10.010

    Article  Google Scholar 

  18. A.-L. Chen, D.-J. Yan, Y.S. Wang, Ch. Zhang, Anti-plane transverse waves propagation in nanoscale periodic layered piezoelectric structures. Ultrasonics 65, 154–164 (2016)

    Article  Google Scholar 

  19. S. Chun, Y. Choi, W. Park, All-graphene strain sensor on soft substrate. Carbon 116, 753–759 (2017). https://doi.org/10.1016/j.carbon.2017.02.058

    Article  Google Scholar 

  20. A.-L. Chen, Y.-S. Wang, L.-L. Ke, Y.-F. Guo, Z.-D. Wang, Wave propagation in nanoscaled periodic layered structures. J. Comput. Theor. Nanoscience 10, 2427–2437 (2013)

    Article  Google Scholar 

  21. D.J. Yan, A.-L. Chen, Y.-S. Wan, C. Zha, M. Golub, Propagation of guided elastic waves in nanoscale layered periodic piezoelectric composites. Eur. J. Mech. A/Solids 66, 158–167 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. E. Majchrzak, B. Mochnacki, J.S. Suchy, Numerical simulation of thermal processes proceeding in a multi-layered film subjected to ultrafast laser heating. J. Theoretical App. Mech. 47(2), 383–396 (2009)

    Google Scholar 

  23. M.A. Al-Nimr, M. Naji, R.I. Abdallah, Thermal behavior of a multi-layered thin slab carrying periodic signals under the effect of the dual-phase-lag heat conduction model. Int. J. Thermophys. 25, 949–966 (2004)

    Article  ADS  Google Scholar 

  24. F.M. Chen, M.H. Shen, Y.J. Lin, Anti-plane piezoelastic study on singularities interacting with interfaces. Int. J. Mech. Sci. 46(10), 1459–1470 (2004). https://doi.org/10.1016/j.ijmecsci.2004.09.007

    Article  MATH  Google Scholar 

  25. A.F. Ghaleb, Coupled thermoelectroelasticity in extended thermodynamics, Encyclopedia of Thermal Stresses (C), R.B. Hetnarski (Ed.), Springer, pp. 767–774 (2014)

  26. M.S. Abou-Dina, A.R. El Dhaba, A.F. Ghaleb, E.K. Rawy, A model of nonlinear thermo-electroelasticity in extended thermo-electroelasticity in extended thermoelasticity. Int. J. Eng. Sci. 119, 29–39 (2017)

    Article  MATH  Google Scholar 

  27. B. Singh, S. Kumari, J. Singh, Propagation of Rayleigh wave in two temperature dual phase lag thermoelasticity. Mech. Mech. Eng. 21(1), 105–116 (2017)

    Google Scholar 

  28. J.N. Sharma, M. Kumar, Plane harmonic waves in piezo-thermoelastic materials. J. Eng. Mat. Sci. 7, 434–442 (2000)

    Google Scholar 

  29. M. Aouadi, Generalized thermo-piezoelectric problems with temperature-dependent properties. Int. J. Solids. Struct. 43, 6347–6358 (2006)

    Article  MATH  Google Scholar 

  30. H.M. Youssef, E. Bassiouny, Two-temperature generalized thermo-piezoelasticity for one-dimensional problems-state space approach. Comput. Meth. Sci. Technol. 14(1), 55–64 (2008)

    Article  Google Scholar 

  31. M.I.A. Othman, S.Y. Atwa, W.M. Hasona, E.A.A. Ahmed, Propagation of plane waves in generalized piezo-thermoelastic medium: Comparison of different theories. Int. J. Innov. Res. Sci. Eng. Technol. (IJIRSET) 4, 2292–2300 (2015)

    Google Scholar 

  32. M.I.A. Othman, E.A.A. Ahmed, The effect of rotation on piezo- thermoelastic medium using different theories. Struct. Eng. Mech. Int. J. 56(4), 649–665 (2015)

    Article  Google Scholar 

  33. H. Fan, J. Long, In-plane surface wave in a classical elastic half-space covered by a surface layer with microstructure. Acta Mech. 231, 4463–4477 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  34. E.A.A. Ahmed, M.S. Abou-Dina, A.F. Ghaleb, W. Mahmoud, Numerical solution to a 2D-problem of piezo-thermoelasticity in a quarter-space within the dual-phase-lag model, Mat. Sci. Eng. B 263, Art. ID 114790, 1-15 (2021)

  35. C. Cattaneo, Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Modena 3, 83–101 (1948)

    MathSciNet  MATH  Google Scholar 

  36. D. Jou, J. Casas-Vázquez, G. Lebon, Extended irreversible thermodynamics: An Overview of recent bibliography. J. Non-equilib Thermodyn. 17, 383–396 (1992)

    Article  ADS  MATH  Google Scholar 

  37. D.S. Chandrasekharaiah, Hyperbolic thermoelasticity: A review of recent literature. Appl. Mech. Rev. 51(12), 705–729 (1998)

    Article  ADS  Google Scholar 

  38. D.Y. Tzou, A unified field approach for heat conduction from macro-to micro-scales. J. Heat Transfer 117(1), 8–16 (1995)

    Article  Google Scholar 

  39. K. Ramadan, Semi-analytical solutions for the dual phase lag heat conduction in multilayered media. Int. J. Thermal Sci. 48, 14–25 (2009)

    Article  Google Scholar 

  40. P. Chadwick, Continuum Mechanics. Concise Theory and Problems (Dover Pub. Inc, Mineola, New York, 1976)

    Google Scholar 

  41. A. Tadeu, N. Simões, Three-dimensional fundamental solutions for transient heat transfer by conduction in an unbounded medium, half-space, slab and layered media. Eng. Anal. Bound. Elem. 30, 338–349 (2006)

    Article  MATH  Google Scholar 

  42. V. Walia, J.N. Sharma, P.K. Sharma, Propagation characteristics of thermoelastic waves in piezoelectric (\(6mm\) class) rotating plate. Eur. J. Mech. A/Solids 28, 569–581 (2009)

    ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ethar A. A. Ahmed.

Appendix A

Appendix A

Coefficients appearing in Eqs. (14a)–(14d)

$$\begin{aligned} \delta _{1}&=\frac{C_{11}}{\rho v_{p}^{2}},&\delta _{2}&=\frac{C_{44}}{ \rho v_{p}^{2}},&\delta _{3}&=\frac{C_{13}+C_{44}}{\rho v_{p}^{2}},&\delta _{4}&=\frac{e_{31}+e_{15}}{e_{33}},&\delta _{5}&=\frac{C_{33}}{ \rho v_{p}^{2}},\\ \displaystyle \delta _{6}&=\frac{e_{15}}{e_{33}},\displaystyle&\delta _{7}&=-\frac{\beta _{3}}{\beta _{1}},\displaystyle&\delta _{8}&=\frac{ e_{15}+e_{31}}{\rho v_{p}^{2}},\displaystyle&\delta _{9}&=\frac{e_{15}}{ \rho v_{p}^{2}},\displaystyle&\delta _{10}&=\frac{e_{33}}{\rho v_{p}^{2}},\\ \displaystyle \delta _{11}&=-\frac{\epsilon _{11}}{e_{33}},\displaystyle&\delta _{12}&=-\frac{\epsilon _{33}}{e_{33}},\displaystyle&\delta _{13}&= \frac{P_{3}}{\beta _{1}},\displaystyle&\delta _{14}&=\frac{K_{1}\omega ^{*}}{\rho C_{T}v_{p}^{2}},\displaystyle&\delta _{15}&=\frac{ K_{3}\omega ^{*}}{\rho C_{T}v_{p}^{2}}, \\ \displaystyle \delta _{16}&=\frac{\beta _{1}^{2}T_{0}}{\rho ^{2}C_{T}v_{p}^{2}},\displaystyle&\delta _{17}&=\frac{\beta _{1}\beta _{3}T_{0}}{\rho ^{2}C_{T}v_{p}^{2}},\displaystyle&\delta _{18}&=-\frac{ P_{3}\beta _{1}T_{0}}{\rho C_{T}e_{33}}.&&\end{aligned}$$

Coefficients appearing in Eqs. (16a)–(16d)

$$\begin{aligned} \displaystyle A_{1}&=\frac{a^{2}c^{2}-a^{2}\delta _{1}}{\delta _{2}}, \displaystyle A_{2} =\frac{ia\delta _{3}}{\delta _{2}}, \displaystyle A_{3} =\frac{ia\delta _{4}}{\delta _{2}}, \displaystyle A_{4} =\frac{-ia }{\delta _{2}}, \\ \displaystyle A_{5}&=\frac{ia\delta _{3}}{\delta _{5}}, \displaystyle A_{6} =\frac{a^{2}c^{2}-a^{2}\delta _{2}}{\delta _{5}}, \displaystyle A_{7} =\frac{1}{\delta _{5}}, \displaystyle A_{8} =-\frac{a^{2}\delta _{6}}{\delta _{5}}, \\ \displaystyle A_{9}&=\frac{\delta _{7}}{\delta _{5}}, \displaystyle A_{10} =\frac{ia\delta _{8}}{\delta _{10}}, \displaystyle A_{11} =-\frac{ a^{2}\delta _{9}}{\delta _{10}}, \displaystyle A_{12} =\frac{\delta _{12} }{\delta _{10}}, \\ \displaystyle A_{13}&=-\frac{a^{2}\delta _{11}}{\delta _{10}}, \displaystyle A_{14} =\frac{\delta _{13}}{\delta _{10}}, \displaystyle A_{15} =-\frac{a^{2}c\delta _{16}(1-iac\tau _{q})}{\delta _{15}(1-iac\tau _{\theta })}, \\ \displaystyle A_{16}&=\frac{iac\delta _{17}(1-iac\tau _{q})}{\delta _{15}(1-iac\tau _{\theta })}, \displaystyle A_{17} =\frac{iac\delta _{18}(1-iac\tau _{q})}{\delta _{15}(1-iac\tau _{\theta })}, \\ \displaystyle A_{18}&=\frac{-a^{2}\delta _{14}(1-iac\tau _{\theta })+iac(1-iac\tau _{q})}{\delta _{15}(1-iac\tau _{\theta })}, \end{aligned}$$

\(\displaystyle A=\frac{-1}{A_{12}-A_{7}}( A_{13}-A_{8}-A_{1}A_{7}+A_{3}A_{5}+A_{1}A_{12}-A_{3}A_{10}+A_{6}A_{12}-A_{7}A_{11}\) \(+A_{7}A_{18} +A_{9}A_{17}+A_{12}A_{18}-A_{14}A_{17}-A_{2}A_{5}A_{12}+A_{2}A_{7}A_{10}\) \(+A_{7}A_{14}A_{16}-A_{9}A_{12}A_{16}),\)

\(\displaystyle B=\frac{1}{A_{12}-A_{7}} (-A_{1}A_{8}+A_{1}A_{13}+A_{6}A_{13}-A_{8}A_{11}-A_{8}A_{18}+A_{13}A_{18}+A_{1}A_{6}A_{12} -A_{1}A_{7}A_{11}+A_{3}A_{5}A_{18}-A_{4}A_{5}A_{17}+A_{4}A_{7}A_{15}+A_{1}A_{9}A_{17}-A_{3}A_{9}A_{15}\,+\) \(A_{1}A_{12}A_{18}-A_{3}A_{10}A_{18}+A_{4}A_{10}A_{17}-A_{4}A_{12}A_{15}-A_{1}A_{14}A_{17}+A_{3}A_{14}A_{15}+A_{6}A_{12}A_{18}-A_{7}A_{11}A_{18}-A_{6}A_{14}A_{17}+A_{9}A_{11}A_{17}+A_{8}A_{14}A_{16}-A_{9}A_{13}A_{16}-A_{2}A_{5}A_{12}A_{18}\) \(+\,A_{2}A_{7}A_{10}A_{18}+A_{4}A_{5}A_{12}A_{16}-A_{4}A_{7}A_{10}A_{16}+A_{1}A_{7}A_{14}A_{16}-A_{1}A_{9}A_{12}A_{16}+A_{2}A_{5}A_{14}A_{17}-A_{2}A_{7}A_{14}A_{15}-A_{2}A_{9}A_{10}A_{17} +A_{2}A_{9}A_{12}A_{15}-A_{3}A_{5}A_{14}A_{16}+A_{3}A_{9}A_{10}A_{16}),\)

\(\displaystyle C=\frac{-1}{A_{12}-A_{7}} (A_{1}A_{6}A_{13}-A_{1}A_{8}A_{11}-A_{1}A_{8}A_{18}+A_{4}A_{8}A_{15}+A_{1}A_{13}A_{18}-A_{4}A_{13}A_{15}+A_{6}A_{13}A_{18}-A_{8}A_{11}A_{18}+A_{1}A_{6}A_{12}A_{18}-A_{1}A_{7}A_{11}A_{18}+A_{3}A_{5}A_{11}A_{18}-A_{3}A_{6}A_{10}A_{18}-\) \(A_{4}A_{5}A_{11}A_{17}+A_{4}A_{6}A_{10}A_{17}-A_{4}A_{6}A_{12}A_{15}+A_{4}A_{7}A_{11}A_{15}-A_{1}A_{6}A_{14}A_{17}+A_{1}A_{9}A_{11}A_{17}-A_{2}A_{5}A_{13}A_{18}+A_{2}A_{8}A_{10}A_{18}+A_{3}A_{6}A_{14}A_{15} - A_{3}A_{9}A_{11}A_{15} +A_{4}A_{5}A_{13}A_{16} - A_{4}A_{8}A_{10}A_{16}\) \(+A_{1}A_{8}A_{14}A_{16}-A_{1}A_{9}A_{13}A_{16} - A_{2}A_{8}A_{14}A_{15}+A_{2}A_{9}A_{13}A_{15}), \)

\(\displaystyle E=\frac{1}{A_{12}-A_{7}} (A_{1}A_{6}A_{13}A_{18}-A_{1}A_{8}A_{11}A_{18}-A_{4}A_{6}A_{13}A_{15}+A_{4}A_{8}A_{11}A_{15}).\)

1.1 Appendix B

Coefficients appearing in Eqs. (20a)–(20e)

$$\begin{aligned} \displaystyle H_{1n}= & {} -\frac{s_{1n}}{s_{2n}} ,\\ \displaystyle H_{2n}= & {} -\frac{q_{1n}+q_{2n}H_{1n}}{q_{3n}}, \\ \displaystyle H_{3n}= & {} -\frac{ (k_{n}^{2}+A_{1})+(-A_{2}k_{n}+A_{3})H_{1n}-A_{4}k_{n}H_{2n}}{A_{4}}, \\ \displaystyle H_{4n}= & {} r_{1}-l_{1}k_{n}H_{1n}-l_{2}k_{n}H_{2n}-H_{3n},\\ \displaystyle H_{5n}= & {} r_{2}-\delta _{5}k_{n}H_{1n}-k_{n}H_{2n}+\delta _{7}H_{3n},\\ \displaystyle H_{6n}= & {} -\delta _{2}k_{n}+r_{3}H_{1n}+r_{4}H_{2n}],\\ \displaystyle H_{7n}= & {} -l_{3}k_{n}+r_{5}H_{1n}+r_{6}H_{2n}, \\ H_{8n}= & {} r_{7}-l_{6}k_{n}H_{1n}-l_{7}k_{n}H_{2n}+l_{8}H_{3n}, \\ n= & {} 1,2,3,4.\\ \displaystyle G_{1n}= & {} -\frac{y_{1n}}{y_{2n}}, \\ \displaystyle G_{2n}= & {} -\frac{z_{4n}+z_{5n}G_{1n}}{z_{6n}}, \\ \displaystyle G_{3n}= & {} -\frac{ (k_{n}^{2}+A_{1})+A_{2}k_{n}G_{1n}+A_{3}k_{n}G_{2n}}{A_{4}},\\ \displaystyle G_{4n}= & {} r_{1}+l_{1}k_{n}G_{1n}+l_{2}k_{n}G_{2n}+G_{3n}, \\ \displaystyle G_{5n}= & {} r_{2}+\delta _{5}k_{n}G_{1n}+k_{n}G_{2n}+\delta _{7}G_{3n},\\ \displaystyle G_{6n}= & {} [\delta _{2}k_{n}+r_{3}G_{1n}+r_{4}G_{2n}],\\ \displaystyle G_{7n}= & {} l_{3}k_{n}+r_{5}G_{1n}+r_{6}G_{2n},\\ \end{aligned}$$
$$\begin{aligned} \displaystyle G_{8n}= & {} r_{7}+l_{6}k_{n}G_{1n}+l_{7}k_{n}G_{2n}+l_{8}G_{3n}, \\ n= & {} 1,2,3,4.\\ q_{1n}= & {} A_{9}k_{n}^{3}+(A_{1}A_{9}-A_{4}A_{5})k_{n}, \\ \displaystyle q_{2n}= & {} (-A_{2}A_{9}+A_{4})k_{n}^{2}+A_{4}A_{6},\\ q_{3n}= & {} (A_{4}A_{7}-A_{3}A_{9})k_{n}^{2}+A_{4}A_{8}, \\ \displaystyle q_{4n}= & {} A_{14}k_{n}^{3}+(A_{1}A_{14}-A_{4}A_{10})k_{n},\\ \displaystyle q_{5n}= & {} (A_{4}-A_{2}A_{14})k_{n}^{2}+A_{4}A_{11},\\ q_{6n}= & {} (A_{4}A_{12}-A_{3}A_{14})k_{n}^{2}+A_{4}A_{13}.\\ \displaystyle s_{1n}= & {} q_{1n}q_{6n}-q_{3n}q_{4n},\\ s_{2n}= & {} q_{2n}q_{6n}-q_{3n}q_{5n},\\ z_{1n}= & {} -A_{9}k_{n}^{3}+(A_{1}A_{9}-A_{4}A_{5})k_{n}, \\ \displaystyle z_{2n}= & {} (-A_{2}A_{9}+A_{4})k_{n}^{2}+A_{4}A_{6},\\ z_{3n}= & {} (A_{4}A_{7}-A_{3}A_{9})k_{n}^{2}+A_{4}A_{8}, \\ \displaystyle z_{4n}= & {} -A_{14}k_{n}^{3}-(A_{1}A_{14}-A_{4}A_{10})k_{n},\\ \displaystyle z_{5n}= & {} (A_{4}-A_{2}A_{14})k_{n}^{2}+A_{4}A_{11},\\ z_{6n}= & {} (A_{4}A_{12}-A_{3}A_{14})k_{n}^{2}+A_{4}A_{13}.\\ \displaystyle y_{1n}= & {} z_{1n}z_{6n}-z_{3n}z_{4n}, \\ y_{2n}= & {} z_{2n}z_{6n}-z_{3n}z_{5n}\\ l_{1}= & {} \frac{C_{13}}{\rho v_{p}^{2}}, \\ l_{2}= & {} \frac{e_{31}}{e_{33}}, \\ l_{3}= & {} \frac{e_{15}\beta _{1}T_{0}}{e\rho v_{p}^{2}}, \\ \displaystyle l_{4}= & {} -\frac{\epsilon _{11}\beta _{1}T_{0}}{ee_{33}},\\ \displaystyle l_{5}= & {} \frac{e_{31}\beta _{1}T_{0}}{e\rho v_{p}^{2}}, \\ \displaystyle l_{6}= & {} \frac{e_{33}\beta _{1}T_{0}}{e\rho v_{p}^{2}}, \\ l_{7}= & {} -\frac{\epsilon _{33}\beta _{1}T_{0}}{ee_{33}}, \\ \displaystyle l_{8}= & {} \frac{P_{3}T_{0}}{e}.\\ \displaystyle \{r_{1},r_{2},r_{3},r_{4},r_{5},r_{6},r_{7}\}= & {} ia\{\delta _{1},l_{1},\delta _{2},\delta _{6},l_{3},l_{4},l_{5}\} \end{aligned}$$

1.2 Appendix C

Matrices appearing in Eq. (22)

$$\begin{aligned} \Lambda _{1}= & {} \left( \begin{array}{cccc} e^{-k_{1s}d} &{} e^{-k_{2s}d} &{} e^{-k_{3s}d} &{} e^{-k_{4s}d} \\ e^{-k_{1s}d}H_{11s} &{} e^{-k_{2s}d}H_{12s} &{} e^{-k_{3s}d}H_{13s} &{} e^{-k_{4s}d}H_{14s} \\ e^{-k_{1s}d}H_{61s} &{} e^{-k_{2s}d}H_{62s} &{} e^{-k_{3s}d}H_{63s} &{} e^{-k_{4s}d}H_{64s} \\ e^{-k_{1s}d}H_{51s} &{} e^{-k_{2s}d}H_{52s} &{} e^{-k_{3s}d}H_{53s} &{} e^{-k_{4s}d}H_{54s} \end{array} \right) , \\ \Lambda _{2}= & {} \left( \begin{array}{cccc} e^{k_{1s}d} &{} e^{k_{2s}d} &{} e^{k_{3s}d} &{} e^{k_{4s}d} \\ e^{k_{1}d}G_{11s} &{} e^{k_{2}d}G_{12s} &{} e^{k_{3}d}G_{13s} &{} e^{k_{4}d}G_{14s} \\ e^{k_{1}d}G_{61s} &{} e^{k_{2}d}G_{62s} &{} e^{k_{3}d}G_{63s} &{} e^{k_{4}d}G_{64s} \\ e^{k_{1}d}G_{51s} &{} e^{k_{2}d}G_{52s} &{} e^{k_{3}d}G_{53s} &{} e^{k_{4}d}G_{54s} \end{array} \right) , \\ \Lambda _{3}= & {} \left( \begin{array}{cccc} -e^{-k_{1h}d} &{} -e^{-k_{2h}d} &{} -e^{-k_{3h}d} &{} -e^{-k_{4h}d} \\ -e^{-k_{1h}d}H_{11h} &{} -e^{-k_{2h}d}H_{12h} &{} -e^{-k_{3h}d}H_{13h} &{} -e^{-k_{4h}d}H_{14h} \\ -e^{-k_{1h}d}H_{61h} &{} -e^{-k_{2h}d}H_{62h} &{} -e^{-k_{3h}d}H_{63h} &{} -e^{-k_{4h}d}H_{64h} \\ -e^{-k_{1h}d}H_{51h} &{} -e^{-k_{2h}d}H_{52h} &{} -e^{-k_{3h}d}H_{53h} &{} -e^{-k_{4h}d}H_{54h} \end{array} \right) ,\\ \Lambda _{4}= & {} \left( \begin{array}{cccc} K_{3s}e^{-k_{1s}d}H_{31s} &{} K_{3s} e^{-k_{2s}d}H_{32s} &{} K_{3s}e^{-k_{3s}d}H_{33s} &{} K_{3s}k_{2s}e^{-k_{3s}d}H_{34s} \\ -K_{3s}k_{1s}e^{-k_{1s}d}H_{31s} &{} -K_{3s}k_{2s} e^{-k_{2s}d}H_{32s} &{} -K_{3s}k_{3s}e^{-k_{3s}d}H_{33s} &{} -K_{3s}k_{4s}e^{-k_{3s}d}H_{34s} \end{array} \right) ,\\ \end{aligned}$$
$$\begin{aligned} \Lambda _{5}= & {} \left( \begin{array}{cccc} K_{3s}e^{k_{1s}d}G_{31s} &{} K_{3s} e^{k_{2s}d}G_{32s} &{} K_{3s}e^{k_{3s}d}H_{33s} &{} K_{3s}k_{2s}e^{k_{3s}d}G_{34s} \\ -K_{3s}k_{1s}e^{k_{1s}d}G_{31s} &{} -K_{3s}k_{2s} e^{k_{2s}d}G_{32s} &{} -K_{3s}k_{3s}k_{4s}e^{k_{3s}d}G_{33s} &{} -K_{3s}k_{4s}k_{1s}e^{k_{3s}d}G_{34s} \end{array} \right) ,\\ \Lambda _{6}= & {} \left( \begin{array}{cccc} -K_{3s}e^{-k_{1s}d}H_{31s} &{} -K_{3s} e^{-k_{2s}d}H_{32s} &{} -K_{3s}e^{-k_{3s}d}H_{33s} &{} -K_{3s}k_{2s}e^{-k_{3s}d}H_{34s} \\ K_{3s}k_{1s}e^{-k_{1s}d}H_{31s} &{} K_{3s}k_{2s} e^{-k_{2s}d}H_{32s} &{} K_{3s}k_{3s}e^{-k_{3s}d}H_{33s} &{} K_{3s}k_{4s}e^{-k_{3s}d}H_{34s} \end{array} \right) ,\\ \Lambda _{7}= & {} \left( \begin{array}{cccc} e^{-k_{1s}d}H_{21s} &{} e^{-k_{2s}d}H_{22s} &{} e^{-k_{3s}d}H_{23s} &{} e^{-k_{4s}d}H_{24s} \\ e^{-k_{1s}d}H_{81s} &{} e^{-k_{2s}d}H_{82s} &{} e^{-k_{3s}d}H_{83s} &{} e^{-k_{4s}d}H_{84s} \\ H_{61s} &{} H_{62s} &{} H_{63s} &{} H_{64s} \\ H_{51s} &{} H_{52s} &{} H_{53s} &{} H_{54s} \end{array} \right) , \\ \Lambda _{8}= & {} \left( \begin{array}{cccc} e^{k_{1s}d}G_{21} &{} e^{k_{2}d}G_{22s} &{} e^{k_{3}d}G_{23s} &{} e^{k_{4}d}G_{24s} \\ e^{k_{1s}d}G_{81} &{} e^{k_{2}d}G_{82s} &{} e^{k_{3}d}G_{83s} &{} e^{k_{4}d}G_{84s} \\ G_{61s} &{} G_{62s} &{} G_{63s} &{} G_{64s} \\ G_{51s} &{} G_{52s} &{} G_{53s} &{} G_{54s} \end{array} \right) , \\ \Lambda _{9}= & {} \left( \begin{array}{cccc} -e^{-k_{1h}d}H_{21h} &{} -e^{-k_{2h}d}H_{22h} &{} -e^{-k_{3h}d}H_{23h} &{} -e^{-k_{4h}d}H_{24h} \\ -e^{-k_{1h}d}H_{81h} &{} -e^{-k_{2h}d}H_{82h} &{} -e^{-k_{3h}d}H_{83h} &{} -e^{-k_{4h}d}H_{84h} \\ 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 \end{array} \right) , \\ \Lambda _{10}= & {} \left( \begin{array}{cccc} H_{31s} &{} H_{32s} &{} H_{33s} &{} H_{34s} \\ H_{21s} &{} H_{22s} &{} H_{23s} &{} H_{24s} \end{array} \right) , \quad \Lambda _{11}=\left( \begin{array}{cccc} G_{31s} &{} G_{32s} &{} G_{33s} &{} G_{34s} \\ G_{21s} &{} G_{22s} &{} G_{23s} &{} G_{24s} \end{array} \right) , \\ \Lambda _{12}= & {} \left( \begin{array}{ccccc} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 \end{array} \right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, E.A.A., El Dhaba, A.R., Abou-Dina, M.S. et al. Thermoelastic wave propagation in a piezoelectric layered half-space within the dual-phase-lag model. Eur. Phys. J. Plus 136, 585 (2021). https://doi.org/10.1140/epjp/s13360-021-01567-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01567-w

Keywords

Navigation