Skip to main content
Log in

Enhanced magnetocaloric effect in a mixed spin-(1/2, 1) Ising–Heisenberg two-leg ladder with strong–rung interaction

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The magnetic and magnetocaloric properties of the mixed spin-(1/2,1) Ising–Heisenberg model on a two-leg ladder with dimer-rung alternation are exactly examined under an adiabatic demagnetization process using the transfer-matrix formalism. We notify that the magnetization curve of the model exhibits plateaux as a function of the applied magnetic field and cyclic four-spin Ising interaction at certain rational fractions of the saturation value. We precisely investigate the ability of cooling/heating of the model nearby the critical points at which discontinuous ground-state phase transition occurs. It is evidenced that the model manifests an enhanced magnetocaloric effect in a proximity of the magnetization steps and jumps, accompanying with the plateaux and jumps of correlation function of the dimer spins. We conclude that not only the cooling/heating capability of the model could be pleasantly demonstrated by the applied magnetic field variations, but also a typical cyclic four-spin Ising interaction plays essential role to determine an efficiency of the magnetocaloric effect of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D.C. Cabra, A. Honecker, P. Pujol, Phys. Rev. Lett. 79, 5126 (1997)

    Article  ADS  Google Scholar 

  2. D.C. Cabra, A. Honecker, P. Pujol, Phys. Rev. B 58, 6241 (1998)

    Article  ADS  Google Scholar 

  3. A. Langari, M. Abolfath, M.A. Martin-Delgado, Phys. Rev. B 61, 343 (2000)

    Article  ADS  Google Scholar 

  4. K. Hida, M. Shino, W. Chen, J. Phys. Soc. Jpn. 73, 1587 (2004)

    Article  ADS  Google Scholar 

  5. T. Vekua, G.I. Japaridze, H.-J. Mikeska, Phys. Rev. B 70, 014425 (2004)

    Article  ADS  Google Scholar 

  6. A. Koga, S. Kumada, N. Kawakami, T. Fukui, J. Phys. Soc. Jpn. 67, 622 (1998)

    Article  ADS  Google Scholar 

  7. N. Avalishvili, B. Beradze, G.I. Japaridze, Eur. Phys. J. B 92, 262 (2019)

    Article  ADS  Google Scholar 

  8. G.I. Japaridze, E. Pogosyan, J. Phys. Condens. Matter 18, 9297 (2006)

    Article  ADS  Google Scholar 

  9. F. Amiri, G. Sun, H.-J. Mikeska, T. Vekua, Phys. Rev. B 92, 184421 (2015)

    Article  ADS  Google Scholar 

  10. J. Jahangiri, F. Amiri, S. Mahdavifar, J. Mag. Mag. Mater. 439, 22 (2017)

    Article  ADS  Google Scholar 

  11. Q. Luo, S. Hu, J. Zhao, A. Metavitsiadis, S. Eggert, X. Wang, Phys. Rev. B 97, 214433 (2018)

    Article  ADS  Google Scholar 

  12. M.T. Batchelor, X.-W. Guan, N. Oelkers, Z. Tsuboi, Adv. Phys. 56, 465 (2007)

    Article  ADS  Google Scholar 

  13. A.S. Oja, O.V. Lounasmaa, Rev. Mod. Phys. 69, 1 (1997)

    Article  ADS  Google Scholar 

  14. A.M. Tishin, Y.I. Spichkin, Materialstoday 6, 51 (2003)

    Google Scholar 

  15. K.A. Gschneider Jr., V.K. Pecharsky, A.O. Tsokol, Rep. Prog. Phys. 68, 1479 (2005)

    Article  ADS  Google Scholar 

  16. D. Choudhury, T. Suzuki, Y. Tokura, Y. Taguchi, Sci. Rep. 4, 7544 (2014)

    Article  ADS  Google Scholar 

  17. H. Neves Bez, C. Bahl, K.K. Nielsen, A. Smith, Magnetocaloric Materials and First Order Phase Transitions. PhD Thesis, Department of Energy Conversion and Storage, Technical University of Denmark (2016)

  18. J.Y. Law, F. Franco, L.M.M. Ramírez et al., Nat. Commun. 9, 2680 (2018)

    Article  ADS  Google Scholar 

  19. L. Zhu, M. Garst, A. Rosch, Q. Si, Phys. Rev. Lett. 91, 066404 (2003)

    Article  ADS  Google Scholar 

  20. M. Garst, A. Rosch, Phys. Rev. B 72, 205129 (2005)

    Article  ADS  Google Scholar 

  21. M.E. Zhitomirsky, A. Honecker, J. Stat. Mech. Theory Exp. P07012 (2004)

  22. A. Honecker, M.E. Zhitomirsky, J. Phys. Conf. Ser. 145, 012982 (2009)

    Article  Google Scholar 

  23. A. Honecker, S. Wessel, Condens. Matter Phys. 12, 399 (2009)

    Article  Google Scholar 

  24. C. Trippe, A. Honecker, A. Klümper, V. Ohanyan, Phys. Rev. B 81, 054402 (2010)

    Article  ADS  Google Scholar 

  25. M. Topilko, T. Krokhmalskii, O. Derzhko, V. Ohanyan, Eur. Phys. J. B 85, 30359 (2012)

    Article  Google Scholar 

  26. L. Gálisová, Condens. Matter Phys. 17, 13001 (2014)

    Article  Google Scholar 

  27. J. Strečka, K. Karľová, T. Madaras, Physica B 466, 76 (2015)

    Article  ADS  Google Scholar 

  28. L. Gálisová, J. Strečka, Physica E 99, 244 (2018)

    Article  ADS  Google Scholar 

  29. J. Strečka, J. Richter, O. Derzhko, T. Verkholyak, K. Karľová, Physica B 536, 364 (2018)

    Article  ADS  Google Scholar 

  30. K. Karľová, J. Strečka, J. Richter, J. Phys. Condens. Matter 29, 125802 (2017)

    Article  ADS  Google Scholar 

  31. K. Karľová, J. Strečka, J. Low Temp. Phys. 187, 727 (2017)

    Article  ADS  Google Scholar 

  32. M. Z̆ukovic̆, M. Semjan, J. Magn. Magn. Mater. 451, 311 (2018)

  33. C. Beckmann, J. Ehrens, J. Schnack, J. Magn. Magn. Mater. 482, 113 (2019)

    Article  ADS  Google Scholar 

  34. V. Ohanyan, A. Honecker, Phys. Rev. B 86, 054412 (2012)

    Article  ADS  Google Scholar 

  35. J. Strečka, O. Rojas, T. Verkholyak, M.L. Lyra, Phys. Rev. E 89, 022143 (2014)

    Article  ADS  Google Scholar 

  36. L. Gálisová, J. Phys. Condens. Matter 28, 476005 (2016)

    Article  ADS  Google Scholar 

  37. J. Torrico, M. Rojas, S.M. de Souza, O. Rojas, Phys. Lett. A 380, 3655 (2016)

    Article  ADS  Google Scholar 

  38. R.C. Alécio, J. Strečka, M.L. Lyra, J. Magn. Magn. Mater. 218, 451 (2018)

    Google Scholar 

  39. L. Gálisová, D. Knežo, Phys. Lett. A 382, 2839 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  40. M. Hamedoun, R. Masrour, K. Bouslykhane, A. Hourmatallah, N. Benzakour, J. Magn. Magn. Mater. 320, 1431 (2008)

    Article  ADS  Google Scholar 

  41. R. Masrour, E.K. Hlil, A. Jabr, M. Hamedoun, A. Benyoussef, A. Hourmatallah, K. Bouslykhane, N. Benzakour, A. Rezzouk, Chin. J. Phys. 2018, 56 (1985)

    Google Scholar 

  42. R. Masrour, M. Hamedoun, A. Benyoussef, J. Magn. Magn. Mater. 322, 301 (2010)

    Article  ADS  Google Scholar 

  43. R. Masrour, E.K. Hlil, M. Hamedoun, A. Benyoussef, A. Boutahar, H. Lassri, J. Magn. Magn. Mater. 393, 600 (2015)

    Article  ADS  Google Scholar 

  44. R. Masrour, M. Hamedoun, Phys. Lett. A 372, 3577 (2008)

    Article  ADS  Google Scholar 

  45. M. Freitas, C. Filgueiras, M. Rojas, Ann. Phys. 531, 1900261 (2019)

    Article  MathSciNet  Google Scholar 

  46. O. Rojas, J. Strečka, O. Derzhko, S.M. de Souza, J. Phys. Condens. Matter 32, 035804 (2020)

    Article  ADS  Google Scholar 

  47. M. Roger, J.H. Hetherington, J.M. Delrieu, Rev. Mod. Phys. 55, 1 (1983)

    Article  ADS  Google Scholar 

  48. M. Müller, T. Vekua, H.J. Mikeska, Phys. Rev. B 66, 134423 (2002)

    Article  ADS  Google Scholar 

  49. T.A. Arakelyan, V.R. Ohanyan, L.N. Ananikyan, N.S. Ananikian, M. Roger, Phys. Rev. B 67, 024424 (2003)

    Article  ADS  Google Scholar 

  50. V. Ohanyan, N. Ananikian, in Mathematical Physics Proceedings of the XI Regional Conference, Tehran, Iran, 2004, edited by S. Rahvar, N. Sadooghi, and F. Shojai, pp. 49-51 (World Scientific, Singapore, 2005).

  51. L.N. Ananikyan, Int. J. Mod. Phys. B 21, 755 (2007)

    Article  ADS  Google Scholar 

  52. V.V. Hovhannisyan, R.G. Ghulghazaryan, N.S. Ananikian, Physica A 388, 1479 (2009)

    Article  ADS  Google Scholar 

  53. N.S. Ananikian, L.N. Ananikian, H.A. Lazaryan, Phys. At. Nucl. 75, 1250 (2012)

    Article  Google Scholar 

  54. L. Gálisová, Phys. Status Solidi B 250, 187 (2013)

    Article  ADS  Google Scholar 

  55. H. Arian Zad, N. Ananikian, J. Phys. Condens. Matter 29, 455402 (2017)

  56. H. Arian Zad, N. Ananikian, J. Phys. Condens. Matter 30, 165403 (2018)

  57. H. Arian Zad, N. Ananikian, Solid State Commun. 276, 24 (2018)

  58. R. Masrour, A. Jabar, Physica A 539, 122878 (2020)

    Article  MathSciNet  Google Scholar 

  59. D. Arnaudon, A. Sedrakyan, T. Sedrakyan, Int. J. Mod. Phys. A 19, 16 (2004)

    Article  ADS  Google Scholar 

  60. K. Hida, K. Takano, H. Suzuki, J. Phys. Soc. Jpn. 79, 114703 (2010)

    Article  ADS  Google Scholar 

  61. H. Lu, N. Hayashi, Y. Matsumoto, H. Takatsu, H. Kageyama, Inorg. Chem. 56, 9353 (2017)

    Article  Google Scholar 

  62. V. Ohanyan, Condens. Matter Phys. 12, 343 (2009)

    Article  Google Scholar 

  63. S. Bellucci, V. Ohanyan, Eur. Phys. J. B 75, 531 (2010)

    Article  ADS  Google Scholar 

  64. S. Bellucci, V. Ohanyan, Eur. Phys. J. B 86, 446 (2013)

    Article  ADS  Google Scholar 

  65. H. G. Paulinelli, S. M. de Souza, O. Rojas, J. Phys. Condens. Matter 25, 306003 (2013)

  66. O. Rojas, J. Strečka, S.M. de Souza, Solid State Commun. 68, 246 (2016)

    Google Scholar 

  67. R. Masrour E.K. Hlil, M. Hamedoun, A. Benyoussef, O. Mounkachi, H. El Moussaoui, J. Magn. Magn. Mater. 361, 197 (2014)

  68. R. Masrour, E.K. Hlil, Physica A 456, 215 (2016)

    Article  ADS  Google Scholar 

  69. R. Masrour, A. Jabar, E.K. Hlil, M. Hamedoun, A. Benyoussef, A. Hourmatallah, A. Rezzouk, K. Bouslykhane, N. Benzakour, J. Magn. Magn. Mater. 430, 89 (2017)

    Article  ADS  Google Scholar 

  70. R. Masrour, E.K. Hlil, M. Hamedoun, A. Benyoussef, Superlattices Microstruc. 67, 256 (2014)

    Article  ADS  Google Scholar 

  71. Y. Mizuno, T. Tohyama, S. Maekawa, J. Phys. Soc. Jpn. 66, 937 (1997)

    Article  ADS  Google Scholar 

  72. J. Wang, Y. Lin, H. Zou, S. Pu, J. Shi, J. Phys. Condens. Matter 21, 075601 (2009)

    Article  ADS  Google Scholar 

  73. I. D. Exius, Properties of Undoped and Doped Spin-1/2 Ladders at Finite Temperature. Thesis (2010)

  74. H. Arian Zad, M. Sabeti, A. Zoshki, N. Ananikian, J. Phys. Condens. Matter 31, 425801 (2019)

  75. H. Arian Zad, N. Ananikian, R. Kenna, J. Phys. Condens. Matter 31, 445802 (2019)

Download references

Acknowledgements

H. Arian Zad acknowledges the receipt of the grant from the Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy. The authors are also grateful to Prof. J. Strečka for insightful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Arian Zad.

Appendix I

Appendix I

Fig. 10
figure 10

\(\varGamma _B\) as a function of the ratio \(B/\alpha J_{\parallel }\) at three different temperatures for the parameter sets (a) \(\{g_1=1\), \(g_2=1\), \(g_3=2\}\), \(J/\alpha J_{\parallel }=4\), \(K/\alpha J_{\parallel }=0\). b \(\{g_1=1\), \(g_2=4\), \(g_3=2\}\), \(J/\alpha J_{\parallel }=2\), \(K/\alpha J_{\parallel }=0\). c \(\{g_1=1\), \(g_2=1\), \(g_3=2\}\), \(J/\alpha J_{\parallel }=4\), \(K/\alpha J_{\parallel }=1\). (d) \(\{g_1=1\), \(g_2=4\), \(g_3=2\}\), \(J/\alpha J_{\parallel }=2\), \(K/\alpha J_{\parallel }=1\). Other parameters \(\alpha \), \(\gamma \), \(\varDelta \) and \(J_{\perp }/\alpha J_{\parallel }\) have been taken as Fig. 2

Qualitatively the field and temperature dependence of \(\varGamma _B\) around a metamagnetic transition can be understood looking at the two Heisenberg spins only. Here, we would like to investigate this medium by sketching the corresponding figures that are surely of rich pedagogical values for the paper. We plot in Fig. 10 parameter \(\varGamma _B\) versus ratio \(B/\alpha J_{\parallel }\) at three different selected temperatures. Four panels of this figure represent \(\varGamma _B\) in four different situations. By comparing this figure with Figs. 7 and 8, one finds that the low-magnetic field behavior of the parameters \(\varGamma _B\) and \(B\varGamma _B\) is quite different. However, both parameters behaves similar to each other in the vicinity of first-order zero-temperature phase transition points.

Fig. 11
figure 11

The contour plot of the entropy and some isentropy lines in the field-temperature plane with the corresponding Grüneisen parameter as a function the magnetic field for the high amount of the cyclic four-spin Ising interaction \(K/\alpha J_{\parallel }=2.5\) under the same conditions considered for the panels Fig. 7a, b, d, e. The reason for choosing value \(K/\alpha J_{\parallel }=2.5\) is that as shown in Fig. 4, there is a critical point in the \((B/\alpha J_{\parallel }-K/\alpha J_{\parallel })\) plane with the co-ordinates (\(B/\alpha J_{\parallel },\; K/\alpha J_{\parallel })\equiv (0, 2.5)\) at which the ground-state phase boundaries cut each other off and make a fascinating point to consider

To better understand the influence of ratio \(K/\alpha J_{\parallel }\) on the thermodynamic mechanism of the model, we illustrate in Fig. 11a and b, the entropy and magnetic Grüneisen parameter in terms of the temperature and the magnetic field for the set \(\{g_1=1\), \(g_2=1\), \(g_3=2\}\) and higher value \(K/\alpha J_{\parallel }=2.5\) by assuming fixed \(J/\alpha J_{\parallel }=4\) (review Fig. 4a in which critical point \((B/\alpha J_{\parallel },\;K/\alpha J_{\parallel })\equiv (0,\;2.5)\) has been marked). While, in Fig. 11c and d, are plotted the entropy and the Grüneisen parameter as functions of the temperature and the magnetic field for the set \(\{g_1=1\), \(g_2=4\), \(g_3=2\}\) and fixed values \(K/\alpha J_{\parallel }=2.5\) and \(J/\alpha J_{\parallel }=2\) (according to the marked critical point \((B/\alpha J_{\parallel },\;K/\alpha J_{\parallel })\equiv (0,\;2.5)\) in Fig. 4b).

Consequently, by imaging different values of the cyclic four-spin Ising interaction parameter \(K/\alpha J_{\parallel }\), despite the fact that phase transitions will occur at detected critical points \(B_c/\alpha J_{\parallel }=\{0,\;3,\;5\}\) for the case \(\{g_1=1\), \(g_2=1\), \(g_3=2\}\), and at \(B_c/\alpha J_{\parallel }=\{0,\;1.5.\;2. 5,\; 3.5,\;5\}\) for the set \(\{g_1=1\), \(g_2=4\), \(g_3=2\}\), the entropy and magnetic Grüneisen parameter qualitatively and quantitatively change different from Fig. 7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arian Zad, H., Ananikian, N. Enhanced magnetocaloric effect in a mixed spin-(1/2, 1) Ising–Heisenberg two-leg ladder with strong–rung interaction. Eur. Phys. J. Plus 136, 597 (2021). https://doi.org/10.1140/epjp/s13360-021-01566-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01566-x

Navigation