Skip to main content

Advertisement

Log in

The extremes of neutron richness

  • Review
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A neutron star is pictured as a gigantic nucleus overwhelmed by the number of neutrons, unlike real atomic nuclei, that have a similar number of neutrons and protons. Is this true? What if we could find or create nuclei without protons? How far can we go in neutron richness? Our common sense tells us that these neutral nuclei should not exist, but if they do they would change our knowledge on neutron stars, on the properties of nuclei in general and ultimately on the nucleon–nucleon interaction itself, the building block of matter. This huge potential impact has pushed some ambitious nuclear physicists to search for them since the 1960s. The first positive hints appeared only in the XXI century, and nowadays, several collaborations are trying to corner these weird objects and give a definite answer to this crucial question. In this review, we will go through this fascinating quest, that started with humble experiments and has now reached a stage of ambitious and sophisticated projects, both in experiment and theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. Its 4n separation energy \(S_{4n}(^8\)He\()=3.1\) MeV has been the upper limit of the tetraneutron binding energy for decades, since a higher value would make \(^8\)He unbound. Recent mass measurements have decreased it to \(S_{4n}(^{19}\)B\()=1.5(4)\) MeV [10].

References

  1. R. Machleidt, Nucl. Phys. A 689, 11c (2001)

    Article  ADS  Google Scholar 

  2. R. Machleidt, I. Slaus, J. Phys. G 27, R69 (2001)

    Article  ADS  Google Scholar 

  3. E. Epelbaum et al., Eur. Phys. J. A 56, 92 (2020)

    Article  ADS  Google Scholar 

  4. K. Sekiguchi et al., Phys. Rev. C 65, (2002)

  5. K. Sekiguchi et al., Phys. Rev. C 70, (2004)

  6. B. Povh et al., Particles and Nuclei: an Introduction to the Physical Concepts (Springer, Berlin, 1999)

    Book  Google Scholar 

  7. I. Tanihata et al., Prog. Part. Nucl. Phys. 68, 215 (2013)

    Article  ADS  Google Scholar 

  8. M. Freer et al., Rev. Mod. Phys. 90, 035004 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  9. W.F. Hornyak, Nuclear Structure (Academic Press, Cambridge, 1975)

    Google Scholar 

  10. M. Wang et al., Chin. Phys. C 41, 030003 (2017)

    Article  ADS  Google Scholar 

  11. R. Guardiola, J. Navarro, Phys. Rev. Lett. 84, 1144 (2000)

    Article  ADS  Google Scholar 

  12. R.A. Aziz, M.J. Slaman, J. Chem. Phys. 94, 8047 (1991)

    Article  ADS  Google Scholar 

  13. V.G.J. Stoks et al., Phys. Rev. C 48, 792 (1993)

    Article  ADS  Google Scholar 

  14. O. Ivanytskyi et al., Eur. Phys. J. A 55, 184 (2019)

    Article  ADS  Google Scholar 

  15. A.A. Ogloblin and Y.E. Penionzhkevich, in Nuclei Far From Stability, Treatise on Heavy-Ion Science, edited by D.A. Bromley (Plenum, New York, 1989), Vol. 8, p. 261, and references therein

  16. F.M. Marqués et al., Phys. Rev. C 65, 044006 (2002)

    Article  ADS  Google Scholar 

  17. K. Kisamori et al., Phys. Rev. Lett. 116, 052501 (2016)

    Article  ADS  Google Scholar 

  18. J. Chadwick, Nature 129, 312 (1932)

    Article  ADS  Google Scholar 

  19. F.M. Marqués et al., Nucl. Instrum. Methods Phys. Res. A450, 109 (2000)

    Article  ADS  Google Scholar 

  20. J.P. Schiffer, R. Vandenbosch, Phys. Lett. 5, 292 (1963)

    Article  ADS  Google Scholar 

  21. S. Cierjacks et al., Phys. Rev. 137, B345 (1965)

    Article  Google Scholar 

  22. C. Détraz, Phys. Lett. 66B, 333 (1977)

    Article  ADS  Google Scholar 

  23. A. Turkevich et al., Phys. Rev. Lett. 38, 1129 (1977)

    Article  ADS  Google Scholar 

  24. F.W.N. de Boer et al., Nucl. Phys. A 350, 149 (1980)

    Article  ADS  Google Scholar 

  25. B.G. Novatsky et al., JETP Lett. 96(5), 280 (2012)

    Article  ADS  Google Scholar 

  26. B.G. Novatsky et al., JETP Lett. 98(11), 656 (2013)

    Article  ADS  Google Scholar 

  27. L. Gilly et al., Phys. Lett. 19, 335 (1965)

    Article  ADS  Google Scholar 

  28. J. Sperinde et al., Phys. Lett. 32B, 185 (1970)

    Article  ADS  Google Scholar 

  29. J. Sperinde et al., Nucl. Phys. B 78, 345 (1974)

    Article  ADS  Google Scholar 

  30. R.I. Jibuti, R.Y. Kezerashvili, Nucl. Phys. A 437, 687 (1985)

    Article  ADS  Google Scholar 

  31. J.E. Ungar et al., Phys. Lett. 144B, 333 (1984)

    Article  ADS  Google Scholar 

  32. A. Stetz et al., Nucl. Phys. A 457, 669 (1986)

    Article  ADS  Google Scholar 

  33. T.P. Gorringe et al., Phys. Rev. C 40, 2390 (1989)

    Article  ADS  Google Scholar 

  34. M. Yuly et al., Phys. Rev. C 55, 1848 (1997)

    Article  ADS  Google Scholar 

  35. J. Gräter et al., Eur. Phys. J. B 4, 5 (1999)

    Article  Google Scholar 

  36. J.A. Bistirlich et al., Phys. Rev. Lett. 36, 942 (1976)

    Article  ADS  Google Scholar 

  37. J.P. Miller et al., Nucl. Phys. A 343, 341 (1980)

    Article  ADS  Google Scholar 

  38. D. Chultem et al., Nucl. Phys. A 316, 290 (1979)

    Article  ADS  Google Scholar 

  39. M.G. Gornov et al., Nucl. Phys. A 531, 613 (1991)

    Article  ADS  Google Scholar 

  40. V. Ajdačić et al., Phys. Rev. Lett. 14, 444 (1965)

    Article  ADS  Google Scholar 

  41. S.T. Thornton et al., Phys. Rev. Lett. 17, 701 (1966)

    Article  ADS  Google Scholar 

  42. G.G. Ohlsen et al., Phys. Rev. 176, 1163 (1968)

    Article  ADS  Google Scholar 

  43. J. Cerny et al., Phys. Lett. 53B, 247 (1974)

    Article  ADS  Google Scholar 

  44. A.V. Belozyorov et al., Nucl. Phys. A 477, 131 (1988)

    Article  ADS  Google Scholar 

  45. H.G. Bohlen et al., Nucl. Phys. A 583, 775 (1995)

    Article  ADS  Google Scholar 

  46. D.V. Aleksandrov et al., JETP Lett. 81(2), 43 (2005)

    Article  ADS  Google Scholar 

  47. T. Nakamura et al., Prog. Part. Nucl. Phys. 97, 53 (2017)

    Article  ADS  Google Scholar 

  48. F.M. Marqués et al., Phys. Lett. B 381, 407 (1996)

    Article  ADS  Google Scholar 

  49. B.M. Sherrill, C.A. Bertulani, Phys. Rev. C 69, (2004)

  50. F.M. Marqués et al. arXiv:nucl-ex/0504009

  51. F.M. Marqués, J. Carbonell, Eur. Phys. J. A 57, 105 (2021)

    Article  ADS  Google Scholar 

  52. W. Glöckle, Phys. Rev. C 18, 564 (1978)

    Article  ADS  Google Scholar 

  53. R. Offermann, W. Glöckle, Nucl. Phys. A 318, 138 (1979)

    Article  ADS  Google Scholar 

  54. H. Witała, W. Glöckle, Phys. Rev. C 60, (1999)

  55. A. Hemmdan et al., Phys. Rev. C 66, 054001 (2002)

    Article  ADS  Google Scholar 

  56. R. Lazauskas, J. Carbonell, Phys. Rev. C 71, (2005)

  57. R. Lazauskas, J. Carbonell, Phys. Rev. C 72, (2005)

  58. S.C. Pieper, Phys. Rev. Lett. 90, (2003)

  59. A.M. Shirokov et al., Phys. Rev. Lett. 117, 182502 (2016)

    Article  ADS  Google Scholar 

  60. S. Gandolfi et al., Phys. Rev. Lett. 118, 232501 (2017)

    Article  ADS  Google Scholar 

  61. K. Fossez et al., Phys. Rev. Lett. 119, 032501 (2017)

    Article  ADS  Google Scholar 

  62. J.G. Li et al., Phys. Rev. C 100, 054313 (2019)

    Article  ADS  Google Scholar 

  63. E. Hiyama et al., Phys. Rev. C 93, 044004 (2016)

    Article  ADS  Google Scholar 

  64. A. Deltuva, R. Lazauskas, Phys. Rev. Lett. 123, (2019)

  65. A. Deltuva, R. Lazauskas, Phys. Rev. C 100, (2019)

  66. S. Ishikawa, Phys. Rev. C 102, (2020)

  67. M.D. Higgins et al., Phys. Rev. Lett. 125, 052501 (2020)

    Article  ADS  Google Scholar 

  68. A. Deltuva, Phys. Lett. B 782, 238 (2018)

    Article  ADS  Google Scholar 

  69. V.M. Bystritsky et al., Nucl. Instrum. Methods Phys. Res. A834, 164 (2016)

    Article  ADS  Google Scholar 

  70. T. Nakamura, Y. Kondo, Nucl. Instrum. Meth. Phys. Res. B 376, 1 (2015)

    Google Scholar 

  71. Technical report of NeuLAND, https://edms.cern.ch/ui/file/1865739/2/TDR_R3B_NeuLAND_public.pdf

  72. Y. Kondo et al. RIBF Proposal NP1312-SAMURAI21

  73. F.M. Marqués et al. RIBF Proposal NP1512-SAMURAI34

  74. S. Shimoura et al. RIBF Proposal NP1512-SHARAQ10

  75. S. Paschalis et al. RIBF Proposal NP1406-SAMURAI19

  76. D. Beaumel et al. RIBF Proposal NP1206-SAMURAI12

  77. T. Nakamura et al. RIBF Proposal NP1812-SAMURAI47

  78. M. Caamaño et al., Phys. Rev. Lett. 99, 062502 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Miguel Marqués.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marqués, F.M. The extremes of neutron richness. Eur. Phys. J. Plus 136, 594 (2021). https://doi.org/10.1140/epjp/s13360-021-01556-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01556-z

Navigation