Skip to main content
Log in

Constantin Carathéodory axiomatic approach and Grigory Perelman thermodynamics for geometric flows and cosmological solitonic solutions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We elaborate on statistical thermodynamics models of relativistic geometric flows as generalizations of G. Perelman and R. Hamilton theory centred around C. Carathéodory axiomatic approach to thermodynamics with Pfaffian differential equations. The anholonomic frame deformation method, AFDM, for constructing generic off-diagonal and locally anisotropic cosmological solitonic solutions in the theory of relativistic geometric flows and general relativity is developed. We conclude that such solutions cannot be described in terms of the Hawking–Bekenstein thermodynamics for hypersurface, holographic, (anti-) de Sitter and similar configurations. The geometric thermodynamic values are defined and computed for nonholonomic Ricci flows, (modified) Einstein equations, and new classes of locally anisotropic cosmological solutions encoding solitonic hierarchies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. M. Planck and some other authors criticism “targeting quick results” was about the difficulty to provide a simple physical picture of the Carathé odory method and the concept of entropy together with sophisticate geometric methods unknown at that time to the bulk of physicists and mathematicians. At present, the functional analysis, measure theory and topology techniques are familiar to researchers publishing works in mathematical physics and geometry and physics.

  2. We parameterize the coordinates as \(u^{\mu }=(x^{i},y^{a}),\) in brief, \( u=(x,y),\) where \(i,j,\ldots =1,2\) and \(a,b=3,4\), with small Greek indices \( \alpha ,\beta , \ldots =1,2,3,4,\) when \(u^{4}=y^{4}=t\) is the time-like coordinate. We shall summarize on “up-low” repeating indices and use boldface symbols for spaces and geometric objects adapted to a N-connection splitting. For a double 2 + 2 and 3 + 1 splitting, the local coordinates are labelled \(u^{\alpha }=(x^{i},y^{a})=(x^{\grave{\imath }},u^{4}=t)\) for \(\grave{ \imath },\grave{j},\grave{k}=1,2,3\). The nonholonomic distributions can be N-adapted form for any open region \(U\subset \) \({\mathbf {V}}\) covered by a family of 3-d spacelike hypersurfaces \(\Xi _{t}\) with a time-like parameter t

  3. A mathematical project usually starts as an axiomatic system starting with an ensemble of declarations/statements. This contains certain constructions, solutions of equations, and proofs of theorems. In the case of Euclidean geometry, the axioms are considered to be self-evident but various motivations and fundamental/experimental arguments are put forward for advanced theories related to physics and applications. As a typical axiomatic approach to modern thermodynamics can be considered [28, 55], the axioms and certain definitions and “rules of interference” provide the basis for proving theorems. The word “postulate” is used in many cases instead of “axiom”. Here, we explain that in mathematics and logics the axioms are considered as general statements accepted without proofs. In their turns, postulates are used for some specific cases and can not be considered as “very general” statements. In many papers in non-mathematical journals oriented to mathematical physics and applications the axioms, definitions and rules of interference are not cite and related rules of interference are not sited but certain proofs and solutions are provided using corresponding mathematical tools. Such a geometric and PDE theory style will be used in this work.

  4. For standard thermodynamic systems, i.e. not for the Ricci flows, this is just the internal energy and external work conservation law, i.e. the first postulate of thermodynamics.

  5. Following Carathéodory (see also discussions and references in [37]), for standard thermodynamic systems the English version of such a famous second axiom is “In the neighbourhood of any equilibrium state of a system (of any number of thermodynamic coordinates), there exists states that are inaccessible by reversible adiabatic processes”. This axiom is better understood if it is used the Kelvin’s formulation of the second law of (standard, not geometric) thermodynamics “no cycle can exist whose net effect is a total conversion of heat into work”.

  6. Having defined such values in a convenient system of reference/coordinates, we can consider changing to any system of reference.

References

  1. A. Sommerfeld, Thermodynamics and Statistical Mechanics (Academic, New York, 1955)

    Google Scholar 

  2. M. Zemansky, Heat and Thermodynamics, 5th edn. (McGraw Hill, London, 1968)

    MATH  Google Scholar 

  3. A. Pippard, The Elements of Classical Thermodynamics (Cambridge University Press, London, 1997)

    Google Scholar 

  4. H. Callen, Thermodynamics (Wiley, New York, 1960)

    MATH  Google Scholar 

  5. P. Landsberg, Thermodynamics (Interscience, New York, 1961)

    MATH  Google Scholar 

  6. J.D. Bekenstein, Black holes and the second law. Nuovo Cimento Lett. 4, 737–740 (1972)

    Article  ADS  Google Scholar 

  7. J.D. Bekenstein, Black holes and entropy. Phys. Rev. D 7, 2333–2346 (1973)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. J.M. Bardeen, B. Carter, S.W. Hawking, The four laws of black hole mechanics. Commun. Math. Phys. 31, 161 (1973)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. S.W. Hawking, Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv: math./0211159

  11. D. Friedan, Nonlinear models in \(2 + \varepsilon \) dimensions. Phys. Rev. Lett. 45, 1057–1060 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  12. R.S. Hamilton, Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17, 255–306 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. H.-D. Cao, H.-P. Zhu, A complete proof of the Poincar é and geometrization conjectures - application of the Hamilton–Perelman theory of the Ricci flow, Asian J. Math. 10 (2006) 165-495; see also a preprint version: H.-D. Cao and H.-P. Zhu, Hamilton–Perelman’s proof of the Poincaré conjecture and the geometrization conjectures, arXiv: math/0612069

  14. J.W. Morgan, G. Tian, Ricci flow and the Poincaré conjecture, AMS, Clay Mathematics Monogaphs, vol. 3, arXiv: math/0607607 (2007)

  15. B. Kleiner, J. Lott, Notes on Perelman’s papers. Geom. Topol. 12, 2587–2855 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Vacaru, Spectral functionals, nonholonomic Dirac operators, and noncommutative Ricci flows. J. Math. Phys. 50, 073503 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. V. Ruchin, O. Vacaru, S. Vacaru, Perelman’s W-entropy and statistical and relativistic thermodynamic description of gravitational fields. Eur. Phys. J. C 77, 184 (2017)

    Article  ADS  Google Scholar 

  18. T. Gheorghiu, V. Ruchin, O. Vacaru, S. Vacaru, Geometric flows and Perelman thermodynamics for black ellipsoids in R2 and Einstein gravity theories. Ann. Phys. NY 369, 1–35 (2016)

    Article  ADS  MATH  Google Scholar 

  19. S. Rajpoot, S. Vacaru, On supersymmetric geometric flows and R2 inflation from scale invariant supergravity. Ann. Phys. NY 384, 20–60 (2017)

    Article  ADS  MATH  Google Scholar 

  20. L. Bubuianu, S. Vacaru, Black holes with MDRs and Bekenstein–Hawking and Perelman entropies for Finsler–Lagrange–Hamilton spaces. Ann. Phys. NY 404, 10–38 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. S. Vacaru, Geometric information flows and G. Perelman entropy for relativistic classical and quantum mechanical systems. Eur. Phys. J. C 80, 639 (2020)

    Article  ADS  Google Scholar 

  22. S. Vacaru, L. Bubuianu, Classical and quantum geometric information flows and entanglement of relativistic mechanical systems. Quantum Inf. Process. 18, 376 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  23. I. Bubuianu, S. Vacaru, E.V. Veliev, Kaluza-Klein gravity & cosmology emerging from G. Perelman’s entropy functionals and quantum geometric information flows, arXiv: 1907.05847v3

  24. C. Caratheodory, Untersuchungen über die Grundlagen der Thermodynamik [Examination of foundations of thermodynamics, English translation by D. H. Delphenich], Math. Ann. 67(1909), 355–385

  25. C. Caratheodory, Ueber die Bestimmung der Engerie und der absoluten Temeperatur mit Hilfe von reversiblen Prozessen. Sitzber Preuss. Acad. Wiss. Phys. Math. K 1, 39–47 (1925)

    MATH  Google Scholar 

  26. O. Redlich, Fundamental thermodynamics since Caratheodory. Rev. Mod. Phys. 40, 556–563 (1968)

    Article  ADS  Google Scholar 

  27. G. Giannakopoulos, Chemical Theormodynamics (University of Athens, Athens, 1974)

    Google Scholar 

  28. M. Gurtin, W. Williams, W. Ziemer, Geometry measures theory and the axioms of continuum thermodynamics. Arch. Rat. Mech. Anal. 92, 1–22 (1986)

    Article  MATH  Google Scholar 

  29. M. Born, Kritische Betrachtungen zur traditionellen Darstellung der Thermdynamik. Phys. Z. 22, 282–286 (1921)

    Google Scholar 

  30. A. Landé, Handbuch der Physik, vol. 9 (Springer, Berlin, 1926)

    MATH  Google Scholar 

  31. S. Chandrasekhar, An Introduction to the Study of Stellar Structure (Dover Publications, NY, 1958); see also the first edition: S. Chandresekhar, An Introduction to Stellar Structure (Chicago, 1939) chapter, p. 11

  32. H.A. Buchdahl, On the principle of Carathéodory. Am. J. Phys. 17, 41–43 (1949)

    Article  ADS  MATH  Google Scholar 

  33. H.A. Buchdahl, The Concepts of Classical Thermodynamics (Cambridge University Press, London, 1966)

    MATH  Google Scholar 

  34. W. Pauli, Termodinamica e Teoria Cinetica dei Gas (Boringhieri, Torino, 1967) pp. 32–41, Italian version of: Vorlesungen ü ber Thermodynamik und Kinetische Gastheorie, Lectures of W. Pauli at the ETH of Zürich collected by E. Jucker (1958)

  35. P.T. Landsberg, A.N. Tikhonov, P.T. Landberg, Thermodynamics and Statistical Mechanics (Dover, NY, 1991)

    Google Scholar 

  36. M. Planck, Über died Bergrundung des zweiten Hauptsatzes der Thermodynamik. S. B. Akad. Wiss. 53, 453–463 (1926)

    MATH  Google Scholar 

  37. L. Pogliani, M.N. Berberan-Santos, Constantin Carathé ory and the axiomatic thermodynamics. J. Math. Chem. 28, 3130–324 (2000)

    Article  MATH  Google Scholar 

  38. I.E. Antoniou, Charatheodory and the foundations of thermodynamics and statistical physics. Found. Phys. 32, 627–641 (2002)

    Article  MathSciNet  Google Scholar 

  39. F. Belgiorno, Homeogeneity as a bridge between Carathé odory and Gibbs, arXiv: math-ph/0210011

  40. F. Beligiorno, Black hole thermodynamics in Carathé odory’s approach. Phys. Lett. A 312, 324–330 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  41. T. Rassias (ed.), C. Caratheodory: An International Tribute (World Scientific, Singapore, 1991)

    MATH  Google Scholar 

  42. Constanine Caratheodory: 125 Years from His Birth, special issue (Aristoteles University of Thessaloniki, 1999)

  43. D. Caratheodory–Radopoulou, D. Vlahostergiou-Vasbateki, Constantine Caratheodory: The Wise Greek of Munich (Athens, 2000) The pictures on p. 242 refers to the 2nd Solvay conference held in Brussels in 1913

  44. E. Spandagos, The Life and Works of Constantine Caratheodory (Aithra, Athens, 2000)

    Google Scholar 

  45. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (Freeman, New York, 1973)

    Google Scholar 

  46. B. Misra, I. Prigogine, M. Courbage, Liapunov variable: entropy and measurements in quantum mechanics. Proc. Nat. Acad. Sci. USA 76, 4768–4772 (1979)

    Article  ADS  Google Scholar 

  47. B. Misra, I. Prigogine, Time probability and dynamics, in Long Time Predictions in Dynamical Systems, ed. by C. Horton, L. Reichl, V. Szebehely (Wiley, NY, 1983), pp. 21–43

    Google Scholar 

  48. I. Antoniou, I. Prigogine, V. Sadovnichii, S. Shkarin, Time operator for diffusion. Chaos Solitons Fract. 11, 465–477 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. C. Carathéodory, Über den Wiederkehrsatz von Poincaré. Preüuss. Akad. Wiss. Phys. Math. 34, 580–584 (1919)

    MATH  Google Scholar 

  50. G. Birkhoff, Proof of the ergodic theorem. Proc. Natl. Acad. Sci. USA 17, 650–660 (1931)

    Article  ADS  MATH  Google Scholar 

  51. I. Cornfeld, S. Fomin, Ya. Sinai, Ergodic Theory (Springer, Berlin, 1982)

    Book  MATH  Google Scholar 

  52. S. Vacaru, Locally anisotropic kinetic processes and thermodynamics in curved spaces. Ann. Phys. (N.Y.) 290, 83–123 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. S. Vacaru, Diffusion and self-organized criticality in Ricci flow evolution of Einstein and Finsler spaces. SYMMETRY Cult. Sci. 23(2), 105–124 (2013); ISSN 0865-4824 (printed), ISSN 2226-1877 (online), Thematic Issue: Field theories on Finsler Space (Symmetries with Finsler metric, 2013); arXiv: 1010.2021

  54. S. Vacaru, Nonholonomic relativistic diffusion and exact solutions for stochastic Einstein spaces. Eur. Phys. J. Plus 127 (2012) 32 (22 pages); ISNN 2190-5444 (electronic), Journal no. 13360; https://doi.org/10.1140/epjp/i2012-12032-0; arXiv: 1010.0647 [math-ph]

  55. E.H. Lieb, J. Yngvason, The physics and mathematics of the second law of thermodynamics. Phys. Rep. 310, 1–96 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. S. Vacaru, Anholonomic soliton-dilaton and black hole solutions in general relativity. JHEP 04, 009 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  57. S. Vacaru, Curve flows and solitonic hierarchies generated by Einstein metrics. Acta Applicandae Mathematicae [ACAP] 110, 73–107 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  58. S. Anco, S. Vacaru, Curve flows in Lagrange–Finsler geometry, bi-Hamiltonian structures and solitons. J. Geom. Phys. 59, 79–103 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. S. Vacaru, Generic off-diagonal solutions and solitonic hierarchies in Einstein and modified gravity. Mod. Phys. Lett. A 30, 1550090 (2015)

    Article  ADS  MATH  Google Scholar 

  60. S. Vacaru, Space-time quasicrystal structures and inflationary and late time evolution dynamics in accelerating cosmology. Class. Quant. Grav. 35, 245009 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  61. L. Bubuianu, S. Vacaru, Deforming black hole and cosmological solutions by quasiperiodic and/or pattern forming structures in modified and Einstein gravity. Eur. Phys. J. C 78, 393 (2018)

    Article  ADS  Google Scholar 

  62. T. Gheorghiu, O. Vacaru, S. Vacaru, Off-diagonal deformations of Kerr black holes in Einstein and modified massive gravity and higher dimensions. Eur. Phys. J. C 74, 3152 (2014)

    Article  ADS  Google Scholar 

  63. R. Giles, Mathematical Foundations of Thermodynamics (Pergamon, NY, 1964)

    MATH  Google Scholar 

  64. L. Tisza, Thermodynamics in a State of Flux. A Search for New Foundations (Mono Book, Baltimore, 1970)

    Google Scholar 

  65. O. Redlich, The Basis of Thermodynamics. A Critical Review of Thermodynamics (Mono Book, Baltimore, 1970)

    Google Scholar 

  66. M. Bunge, Philosophy of Physics (Reidel, Dordrecht, 1973)

    Book  Google Scholar 

  67. C. Caratheodory, Vorlesungen uber reele Functionen, vol. 1918 (Teubner, Leipzig, 1927)

    Book  Google Scholar 

  68. C. Caratheodory, Algebraic Theory of Measure and Integration, 2nd edn. (Chelsea, NY, 1986)

  69. H. Royden, Real Analysis, 3rd edn. (McMillan, New York, 1988)

    MATH  Google Scholar 

  70. T. Bedford, N. Keane, C. Series, Ergodic Theory Symbolic Dynamics and Hyperbolic Spaces (Oxford University Press, New York, 1991)

    MATH  Google Scholar 

  71. A. Khinchin, Mathematical Foundations of Information Theory (Dover, New York, 1957)

    MATH  Google Scholar 

  72. Y. Kakihara, Abstract Methods in Information Theory (World Scientific, Singapore, 1999)

    Book  MATH  Google Scholar 

  73. I. Antoniou, F. Bosco, Z. Suchanecki, Spectral decomposition of expanding probabilistic dynamical systems. Phys. Lett. A 239, 153–158 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. I. Antoniou, V. Basios, F. Bosco, Absolute controllability condition for probabilistic control of chaos. J. Bifurc. Chaos 8, 409–413 (1998)

    Article  MATH  Google Scholar 

  75. S. Vacaru, On axiomatic formulation of gravity and matter field theories with MDRs and Finsler–Lagrange–Hamilton geometry on (co)tangent Lorentz bundles, arXiv: 1801.06444

  76. L. Bubuianu, S. Vacaru, Axiomatic formulations of modified gravity theories with nonlinear dispersion relations and Finsler–Lagrange–Hamilton geometry. Eur. Phys. J. C 78, 969 (2018)

    Article  ADS  Google Scholar 

  77. L. Bubuianu, S. Vacaru, Quasi-stationary solutions in gravity theories with modified dispersion relations and Finsler–Lagrange–Hamilton geometry. Eur. Phys. J. P 135, 148 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This research develops former programs partially supported by IDEI, PN-II-ID-PCE-2011-3-0256, CERN and DAAD and extended to collaborations at California State University at Fresno, the USA, and Yu. Fedkovych Chernivtsi National University, Ukraine. Author S. Vacaru is grateful to Prof. P. Stavrinos for his former support and collaboration. He thanks Prof. I. Antoniou for providing very important references on Carathéodory research in mathematics and physics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergiu I. Vacaru.

Appendices

Pfaffian differential equations

Let us provide a brief introduction into the theory of Pfaff forms and thermodynamics, see details and references in [37,38,39]. A Pfaff differential form is \(\ \delta \phi =\sum \nolimits _{I}X_{I}{\text {d}}z^{I},\) where I runs integer values (for simplicity, we consider \(I=1,2\)) and \(\delta f\) is differential 1-form but may be not a differential of a real valued function \(\phi (z^{I})\) of real variables \(z^{I},\) where \(\partial _{I}:= \partial /\partial z^{I}\). An equation

$$\begin{aligned} \delta \phi =0 \end{aligned}$$
(A.1)

is called a non-exact Pfaff equation. If \(\delta \phi ={\text {d}}\phi =(\partial _{I}\phi ){\text {d}}z^{I}\) is an exact differential of a function \(\phi (z^{I}),\) i.e. we have an exact Pfaff equation, it is possible to integrate (A.1) along a path C connecting two points \(z_{[1]}^{I}\) and \( z_{[2]}^{I}\) (when \(\phi \) is path-independent) and express the solution in the form

$$\begin{aligned} \phi =\int \nolimits _{C}{\text {d}}\phi =\phi (z_{[2]}^{I})-\phi (z_{[1]}^{I})=const. \end{aligned}$$

The H. A. Schwarz criterion is the necessary and sufficient condition to detect a total differential equation

$$\begin{aligned} \partial _{I}X_{J}=\partial _{J}X_{I}, \text{ for } I\ne J, \text{ i.e. } \frac{ \partial ^{2}\phi }{\partial x^{1}\partial x^{2}}=\frac{\partial ^{2}\phi }{ \partial x^{2}\partial x^{1}}. \end{aligned}$$
(A.2)

In many cases, a non-exact Pfaffian with \(\partial _{I}X_{J}\ne \partial _{J}X_{I}\) can be transformed into an exact one by the aid of an integrating factor \(K(z^{I}),\) when the coefficients of \(\sum \nolimits _{I}KX_{I}{\text {d}}z^{I}\) satisfy the Schwarz condition

$$\begin{aligned} \partial _{I}(KX_{J})=\partial _{J}(KX_{I}), \text{ for } I\ne J. \end{aligned}$$
(A.3)

In such a case, the equation

$$\begin{aligned} K\delta \phi ={\text {d}}(K\phi )=0 \end{aligned}$$
(A.4)

can be integrated in an explicit form which allows us to find \(\phi \) for any prescribed K satisfying (A.3).

In a more general context, if we are not able to transform (A.1) into a (A.4), we can additionally add to

$$\begin{aligned} \delta (K\phi )=\sum \limits _{I}KX_{I}{\text {d}}z^{I}\ne {\text {d}}(K\phi ) \end{aligned}$$

a differential of a new function \(B(z^{I}),{\text {d}}B=(\partial _{I}B){\text {d}}z^{I}\) and search for such K and B when

$$\begin{aligned} \partial _{I}(KX_{J}+B)=\partial _{J}(KX_{I}+B), \text{ for } I\ne J \text{ and } \delta (K\phi )+{\text {d}}B={\text {d}}(K\phi +B). \end{aligned}$$

In such a case, we can integrate

$$\begin{aligned} {\text {d}}(K\phi +B)=0 \end{aligned}$$
(A.5)

for any suitable K and B and find \(\phi \) in nonexplicit form from a so-called nonholonomic (non-integrable) function \(F(\phi ,z^{I})=const.\) Usually, in thermodynamics we deal with equations of type (A.1) into a (A.4), but on nonholonomic manifolds, equations of type (A.5) are involved.

Parameterizations for families of cosmological d-metrics

We consider basic notations for quadratic line elements describing geometric flow evolutions and nonholonomic deformations of prime metrics into target cosmological ones.

1.1 Target d-metrics with geometric evolution of polarization functions

Families of target quadratic line elements can be represented in off-diagonal form, \({\mathbf {g}}_{\alpha \beta }=[g_{i},h_{a},n_{i},w_{i}],\) and/or using \(\eta \)-polarization functions

$$\begin{aligned} ds^{2}(\tau )= & {} g_{i}(\tau ,x^{k})[{\text {d}}x^{i}]^{2}+h_{3}(\tau ,x^{k},t)[{\text {d}}y^{3}+n_{i}(\tau ,x^{k},t){\text {d}}x^{i}]^{2}\nonumber \\&+h_{4}(\tau ,x^{k},t)[{\text {d}}t+w_{i}(\tau ,x^{k},t){\text {d}}x^{i}]^{2} \end{aligned}$$
(B.1)
$$\begin{aligned}= & {} \eta _{i}(\tau ,x^{k},t)\mathring{g}_{i}(x^{k},t)[{\text {d}}x^{i}]^{2}+\eta _{3}(\tau ,x^{k},t)\mathring{h}_{3}(x^{k},t)\nonumber \\&[{\text {d}}y^{3}+\eta _{i}^{3}(\tau ,x^{k},t)\mathring{N}_{i}^{3}(x^{k},t){\text {d}}x^{i}]^{2} \nonumber \\&+\eta _{4}(\tau ,x^{k},t)\mathring{h}_{4}(x^{k},t)[{\text {d}}t+\eta _{i}^{4}(\tau ,x^{k},t)\mathring{N}_{i}^{4}(x^{k},t){\text {d}}x^{i}]^{2} \nonumber \\= & {} \eta _{i}(\tau )\mathring{g}_{i}[{\text {d}}x^{i}]^{2}+\eta _{3}(\tau )\mathring{h} _{3}[{\text {d}}y^{3}+\eta _{k}^{3}(\tau )\mathring{N}_{k}^{3}{\text {d}}x^{k}]^{2}\nonumber \\&+\eta _{4}(\tau )\mathring{h}_{4}[{\text {d}}t+\eta _{k}^{4}(\tau )\mathring{N} _{k}^{4}{\text {d}}x^{k}]^{2}, \end{aligned}$$
(B.2)

where \(\tau \) is a temperature-like geometric evolution parameter and, for simplicity, we consider that prime metrics do not depend on such a parameter. There will be stated dependencies of type \(\eta _{a}(\tau )=\eta _{a}(\tau ,x^{k},t)\) if such not notations do not result in ambiguities. We consider a coordinate transform to a new time-like coordinate \( y^{4}=t\rightarrow \varsigma \) when \(t=t(x^{i},\varsigma ),\)

$$\begin{aligned} {\text {d}}t=\partial _{i}t{\text {d}}x^{i}+(\partial t/\partial \varsigma ){\text {d}}\varsigma ;{\text {d}}\varsigma =(\partial t/\partial \varsigma )^{-1}({\text {d}}t-\partial _{i}t{\text {d}}x^{i}), \text{ i.e. } (\partial t/\partial \varsigma ){\text {d}}\varsigma =({\text {d}}t-\partial _{i}t{\text {d}}x^{i}), \end{aligned}$$

and rewrite the target d-metric using the new time variable \(\varsigma \) . For instance, the fourth term in (B.2) is computed

$$\begin{aligned}&\eta _{4}(\tau )\mathring{h}_{4}[{\text {d}}t+\eta _{k}^{4}(\tau )\mathring{N} _{k}^{4}{\text {d}}x^{k}]^{2}=\eta _{4}(\tau )\mathring{h}_{4}[\partial _{k}t{\text {d}}x^{k}+(\partial t/\partial \varsigma ){\text {d}}\varsigma +\eta _{k}^{4}(\tau ) \mathring{N}_{k}^{4}{\text {d}}x^{k}]^{2} \\&\quad =\eta _{4}(\tau )\mathring{h}_{4}[(\partial _{k}t){\text {d}}x^{k}+(\partial t/\partial \varsigma ){\text {d}}\varsigma +\eta _{k}^{4}(\tau )\mathring{N} _{k}^{4}{\text {d}}x^{k}]^{2}\\&\quad =\eta _{4}(\tau )\mathring{h}_{4}[(\partial t/\partial \varsigma ){\text {d}}\varsigma +(\partial _{k}t+\eta _{k}^{4}(\tau )\mathring{N} _{k}^{4}){\text {d}}x^{k}]^{2} \\&\quad =\mathring{h}_{4}[\eta _{4}(\tau )(\partial t/\partial \varsigma ){\text {d}}\varsigma +\eta _{4}(\tau )(\partial _{k}t+\eta _{k}^{4}(\tau )\mathring{N} _{k}^{4}){\text {d}}x^{k}]^{2}\\&\quad =\mathring{h}_{4}[\eta _{4}(\tau )(\partial t/\partial \varsigma ){\text {d}}\varsigma +\eta _{4}(\tau )(\partial _{k}t/\mathring{N} _{k}^{4}+\eta _{k}^{4}(\tau ))\mathring{N}_{k}^{4}{\text {d}}x^{k}]^{2} \end{aligned}$$

If \(\eta _{4}\partial t/\partial \varsigma =1,\) when \(\partial t/\partial \varsigma =(\eta _{4})^{-1}\) is introduced for \({\text {d}}t=\partial _{i}t{\text {d}}x^{i}+(\partial t/\partial \varsigma ){\text {d}}\varsigma ,\) we obtain

$$\begin{aligned} {\text {d}}t=(\partial _{i}t){\text {d}}x^{i}+(\eta _{4})^{-1}{\text {d}}\varsigma \text{ for } {\check{\eta }} _{k}^{4}=\eta _{4}(\partial _{k}t+\eta _{k}^{4}\mathring{N}_{k}^{4}). \end{aligned}$$

In result, a new time coordinate \(\varsigma \) can be found from \(\partial t/\partial \varsigma =(\eta _{4})^{-1}\) which results in

$$\begin{aligned} {\text {d}}\varsigma =\eta _{4}(x^{k},t){\text {d}}t;\varsigma =\int \eta _{4}(x^{k},t){\text {d}}t+\varsigma _{0}(x^{k}). \end{aligned}$$

Such coordinates with flow parameter \(\tau \) and time-like \(\varsigma \) are useful for computations of geometric evolution and nonholonomic deformations of the FLRW metrics.

1.2 Off-diagonal and diagonal parameterizations of prime d-metrics

Let us consider a target line quadratic element for an off-diagonal cosmological solution written in the form (B.2). We can introduce an effective target locally anisotropic cosmological scaling factor \({\check{a}} ^{2}(\tau ,x^{k},\varsigma ):= \eta (\tau ,x^{k},\varsigma )\mathring{a} ^{2}(x^{i},\varsigma )\) with gravitational polarization \(\eta (\tau ,x^{k},\varsigma )\) and prime cosmological scaling factor \(\mathring{a} ^{2}(\tau ,x^{i},\varsigma ),\) which allows to consider limits \(\mathring{a} (\tau ,x^{i},\varsigma )\rightarrow \mathring{a}(\varsigma )\) with typical FLRW configurations. This can be performed following formulas

$$\begin{aligned} ds^{2}&=\eta _{3}(\tau )\{\frac{\eta _{i}(\tau )}{\eta _{3}(\tau )} \mathring{g}_{i}[{\text {d}}x^{i}]^{2}+\mathring{h}_{3}[{\text {d}}y^{3}+\eta _{k}^{3}\mathring{N }_{k}^{3}{\text {d}}x^{k}]^{2}\}+\mathring{h}_{4}[{\text {d}}\tau +{\check{\eta }}_{k}^{4}\mathring{ N}_{k}^{4}{\text {d}}x^{k}]^{2} \nonumber \\&={\check{a}}^{2}(\tau ,x^{k},\varsigma )\{{\check{\eta }}_{i}(\tau ,x^{k},\varsigma )\mathring{g}_{i}[{\text {d}}x^{i}]^{2}+\mathring{h}_{3}[{\text {d}}y^{3}+ {\check{\eta }}_{k}^{3}(\tau ,x^{k},\varsigma )\mathring{N}_{k}^{3}{\text {d}}x^{k}]^{2} \}\nonumber \\&+\mathring{h}_{4}[{\text {d}}\varsigma +{\check{\eta }}_{k}^{4}(\tau ,x^{k},\varsigma ) \mathring{N}_{k}^{4}{\text {d}}x^{k}]^{2} \nonumber \\&=\eta (\tau ,x^{k},\varsigma )\mathring{a}^{2}(\tau ,x^{i},\varsigma )\{ {\check{\eta }}_{i}(\tau ,x^{k},\varsigma )\mathring{g}_{i}[{\text {d}}x^{i}]^{2}+ \mathring{h}_{3}[{\text {d}}y^{3}+{\check{\eta }}_{k}^{3}(\tau ,x^{k},\varsigma ) \mathring{N}_{k}^{3}{\text {d}}x^{k}]^{2}\}\nonumber \\&+\mathring{h}_{4}[{\text {d}}\varsigma +{\check{\eta }} _{k}^{4}(\tau ,x^{k},\varsigma )\mathring{N}_{k}^{4}{\text {d}}x^{k}]^{2}, \nonumber \\ \text{ where } {\check{a}}^{2}(\tau ,x^{k},\varsigma )&:= \eta _{3}(\tau ,x^{k},t(x^{i},\varsigma ))=\eta (\tau ,x^{k},t(x^{i},\varsigma ))\mathring{a }^{2}(x^{k},t(x^{i},\varsigma ))=\eta (\tau ,x^{k},\varsigma )\mathring{a} ^{2}(x^{i},\varsigma ); \nonumber \\ {\check{\eta }}_{i}(\tau ,x^{k},\varsigma )&:= \frac{\eta _{i}(\tau ,x^{k},t(x^{i},\varsigma ))}{\eta (\tau ,x^{k},t(x^{i},\varsigma ))};\ {\check{\eta }}_{k}^{3}(\tau ,x^{k},\varsigma ):= \eta _{k}^{3}(\tau ,x^{k},t(x^{i},\varsigma ));\nonumber \\ {\check{\eta }}_{k}^{4}(\tau ,x^{k},\varsigma )&:= \eta _{4}\{\tau ,\partial _{k}t(x^{i},\varsigma )[\mathring{N}_{k}^{4}(x^{i},t(x^{i},\varsigma ))]^{-1}+\eta _{k}^{4}(\tau ,x^{i},t(x^{i},\varsigma ))\}\mathring{N} _{k}^{4}(x^{i},t(x^{i},\varsigma )). \end{aligned}$$
(B.3)

Considering a prime d-metric as a flat FLRW metric written in local coordinates \({\overline{u}}=\{{\overline{u}}^{\alpha }(x^{i},y^{3},\varsigma )=({\overline{x}} ^{1}(x^{i},y^{3},\varsigma ),{\overline{x}}^{2}(x^{i},y^{3},\varsigma ), {\overline{y}}^{3}(x^{i},y^{3},\varsigma ),{\overline{y}}^{4}(x^{i},y^{3}, \varsigma ))\},\) a d-metric (B.1) can be written in curved coordinate form \(\mathring{a}^{2}({\overline{u}}),\) with local coordinated \( {\overline{u}}^{\alpha }\) using a prime cosmological scaling factor \(\mathring{ a}^{2}(\varsigma ),\)

$$\begin{aligned} d\mathring{s}^{2}= & {} \mathring{a}^{2}({\overline{u}})\{\mathring{g}_{i}( {\overline{u}})[d{\overline{x}}^{i}]^{2}+\mathring{h}_{3}({\overline{u}})[d {\overline{y}}^{3}+\mathring{N}_{k}^{3}({\overline{u}})d{\overline{x}}^{k}]^{2}\}+ \mathring{h}_{4}({\overline{u}})[d{\overline{y}}^{4}+\mathring{N}_{k}^{4}( {\overline{u}})d{\overline{x}}^{k}]^{2}\rightarrow \mathring{a}^{2}(\varsigma )[{\text {d}}x^{{\check{i}}}]^{2}-{\text {d}}\varsigma ^{2}, \\ \text{ for } {\overline{u}}^{\alpha }\rightarrow & {} (x^{i},y^{3},\varsigma ), \mathring{g}_{i}\rightarrow 1,\mathring{h}_{3}\rightarrow 1,\mathring{h} _{4}\rightarrow -1,\mathring{N}_{k}^{a}({\overline{u}})\rightarrow 0 \text{ and } \mathring{a}^{2}({\overline{u}})\rightarrow \mathring{a}^{2}(\varsigma ). \end{aligned}$$

By definition, a quasi-FLRW configuration is stated by a diagonalized solution for a d-metric of type (B.3) when the integration functions and coordinates result in \({\check{\eta }}_{k}^{a}(\tau ,x^{k},\varsigma )=0,\)

$$\begin{aligned} ds^{2}=\eta (\tau ,x^{k},\varsigma )\mathring{a}^{2}\{{\check{\eta }}_{i}(\tau ,x^{k},\varsigma )\mathring{g}_{i}[{\text {d}}x^{i}]^{2}+\mathring{h} _{3}[{\text {d}}y^{3}]^{2}\}+\mathring{h}_{4}[{\text {d}}\varsigma ]^{2}. \end{aligned}$$
(B.4)

Small nonholonomic deformations of such d-metrics can be parameterized \( {\check{\eta }}_{i}\tau )\simeq \) \(1+\varepsilon {\check{\chi }}_{i}(\tau ,x^{k},\varsigma )\) (see below formulas relevant to (B.9)) by the polarization of the target cosmological factor, \(\eta (\tau ,x^{k},\varsigma )\) can be arbitrary one and not a value of \(1+\varepsilon \chi (\tau ,x^{k},\varsigma )\) with a small parameter \(\varepsilon .\) We can consider a resulting scaling factor \(a^{2}(\tau ,x^{k},\varsigma )=\eta (\tau ,x^{k},\varsigma )\mathring{a}^{2}(x^{k},\varsigma ),\) with possible further re-parametrizations or limits to \(a^{2}(\tau ,\varsigma )=\eta (\tau ,\varsigma )\mathring{a}^{2}(\varsigma )\) encoding possible nonlinear off-diagonal and parametric interactions determined by systems of nonlinear PDEs.

1.3 Approximations for flows of target d-metrics

To study nonlinear properties of cosmological models is convenient to consider different types of parameterizations and approximations for nonholonomic deformations of a prime metric to a target d-metric (B.3) being under geometric flow evolution. For our purposes, there are important six classes of exact, or parametric, solutions which can be generated by a respective subclass of generating functions and/or generating sources and, for certain cases, making some diagonal approximations, or by introducing small \(\varepsilon \)-parameters.

  1. 1.

    We can chose mutual re-parametrization of generating functions \((\Psi ,\Upsilon )\iff (\Phi ,\Lambda =const)\) and integrating functions when the coefficients of a family of target d-metric \(\widehat{{\mathbf {g}}}_{\alpha \beta }(\tau ,\varsigma )\) depend only a time-like coordinate \(\varsigma ,\) when \(\eta (\tau ,x^{k},\varsigma )\rightarrow \) \({\widetilde{\eta }}(\tau ,\varsigma )\) and \(a(\tau ,x^{k},\varsigma )\rightarrow {\widetilde{a}} ^{2}(\tau ,\varsigma )=\) \({\widetilde{\eta }}(\tau ,\varsigma )\mathring{a} ^{2}(\varsigma ).\) Respective families of linear quadratic elements (B.3) can be represented in the form

    $$\begin{aligned} ds^{2}(\tau )=\eta (\tau ,\varsigma )\mathring{a}^{2}(\varsigma )\{\check{ \eta }_{i}(\tau ,\varsigma )\mathring{g}_{i}[{\text {d}}x^{i}]^{2}+\mathring{h} _{3}[{\text {d}}y^{3}+{\check{\eta }}_{k}^{3}(\tau ,\varsigma )\mathring{N} _{k}^{3}{\text {d}}x^{k}]^{2}\}+\mathring{h}_{4}[{\text {d}}\varsigma +{\check{\eta }}_{k}^{4}(\tau ,\varsigma )\mathring{N}_{k}^{4}{\text {d}}x^{k}]^{2}. \end{aligned}$$
    (B.5)

    With respect to coordinate bases, such families of cosmological solutions can be generic off-diagonal and could be chosen in some forms describing nonholonomic deformations of Bianchi cosmological models.

  2. 2.

    For FLRW prime configurations, we can consider families of generation functions and integration functions which result in zero values of the target N-connection coefficients under geometric flow evolutions and/or consider limits \(\mathring{N}_{k}^{a}\rightarrow 0.\) For such cases, we can transform families (B.5) into families of diagonal metrics

    $$\begin{aligned} ds^{2}(\tau )=\eta (\tau ,\varsigma )\mathring{a}^{2}(\varsigma )\{\check{ \eta }_{i}(\tau ,\varsigma )\mathring{g}_{i}[{\text {d}}x^{i}]^{2}+\mathring{h} _{3}({\text {d}}y^{3})^{2}\}+\mathring{h}_{4}({\text {d}}\tau )^{2} \end{aligned}$$
    (B.6)

    modelling locally anisotropic interactions with a “memory” of nonholonomic/off-diagonal structures.

  3. 3.

    Flow evolution with small parametric nonholonomic deformations of a prime metric into families of target off-diagonal cosmological solutions (B.3) can be approximated

    $$\begin{aligned} {\check{\eta }}_{i}(\tau ,x^{k},\varsigma )\simeq 1+\varepsilon _{i}{\check{\chi }} _{i}(\tau ,x^{k},\varsigma ),\eta (\tau ,x^{k},\varsigma )\simeq 1+\varepsilon _{3}\chi (\tau ,x^{k},\varsigma ),{\check{\eta }}_{k}^{a}(\tau ,x^{k},\varsigma )\simeq 1+\varepsilon _{k}^{a}{\check{\chi }}_{k}^{a}(\tau ,x^{k},\varsigma ), \end{aligned}$$

    where small parameters \(\varepsilon _{i},\varepsilon _{3},\varepsilon _{k}^{a}\) satisfy conditions of type \(0\le |\varepsilon _{i}|,|\varepsilon _{3}|,|\varepsilon _{k}^{a}|\ll 1\) and, for instance, \(\chi (\tau ,x^{k},\varsigma )\) is taken as a generating function. Such approximations restrict the class of generating functions subjected to nonlinear symmetries and may impose certain relations between such \(\varepsilon \)-constants and \( \chi \)-functions. Corresponding quadratic line elements can be parameterized

    $$\begin{aligned} ds^{2}(\tau )= & {} [1+\varepsilon _{3}\chi (\tau ,x^{k},\varsigma )]\mathring{a }^{2}(x^{i},\varsigma )\{[1+\varepsilon _{i}{\check{\chi }}_{i}(\tau ,x^{k},\varsigma )]\mathring{g}_{i}[{\text {d}}x^{i}]^{2} \nonumber \\&+\mathring{h}_{3}[{\text {d}}y^{3}+(1+\varepsilon _{k}^{3}{\check{\chi }}_{k}^{3}(\tau ,x^{k},\varsigma ))\mathring{N}_{k}^{3}{\text {d}}x^{k}]^{2}\}+\mathring{h} _{4}[{\text {d}}\varsigma +(1+\varepsilon _{k}^{4}{\check{\chi }}_{k}^{4}(\tau ,x^{k},\varsigma ))\mathring{N}_{k}^{4}{\text {d}}x^{k}]^{2}.\nonumber \\ \end{aligned}$$
    (B.7)

    Such \(\tau \)-families of off-diagonal solutions define cosmological metrics with certain small independent fluctuations, for instance, a FLRW embedded self-consistently into a locally anisotropic background under geometric flow evolution.

  4. 4.

    We can consider also families of off-diagonal cosmological solutions with small parameters \(\varepsilon _{i},\varepsilon _{3},\varepsilon _{k}^{a} \) when the generating functions and d-metric and N-connection coefficients do not depend on space like coordinates, which is typical for a number of cosmological models. For such approximations, the family of quadratic line element (B.7) transforms into

    $$\begin{aligned} ds^{2}(\tau )= & {} [1+\varepsilon _{3}\chi (\tau ,\varsigma )]\mathring{a} ^{2}(\varsigma )\{[1+\varepsilon _{i}{\check{\chi }}_{i}(\tau ,\varsigma )] \mathring{g}_{i}[{\text {d}}x^{i}]^{2} \nonumber \\&+\mathring{h}_{3}[{\text {d}}y^{3}+(1+\varepsilon _{k}^{3}{\check{\chi }}_{k}^{3}(\tau ,\varsigma ))\mathring{N}_{k}^{3}{\text {d}}x^{k}]^{2}\}+\mathring{h}_{4}[{\text {d}}\varsigma +(1+\varepsilon _{k}^{4}{\check{\chi }}_{k}^{4}(\tau ,\varsigma ))\mathring{N} _{k}^{4}{\text {d}}x^{k}]^{2}. \end{aligned}$$
    (B.8)
  5. 5.

    There are off-diagonal deformations, for instance, of a FLRW metric into a family of locally anisotropic cosmological solutions which can be constructed using only one small parameter \(\varepsilon =\varepsilon _{i}=\varepsilon _{3}=\varepsilon _{k}^{a},\) and when the formulas (B.8) transform into

    $$\begin{aligned} ds^{2}(\tau )= & {} [1+\varepsilon \chi (\tau ,x^{k},\varsigma )]\mathring{a} ^{2}(x^{i},\varsigma )\{[1+\varepsilon {\check{\chi }}_{i}(\tau ,x^{k},\varsigma )]\mathring{g}_{i}[{\text {d}}x^{i}]^{2} \nonumber \\&+\mathring{h}_{3}[{\text {d}}y^{3}+(1+\varepsilon {\check{\chi }}_{k}^{3}(\tau ,x^{k},\varsigma ))\mathring{N}_{k}^{3}{\text {d}}x^{k}]^{2}\}+\mathring{h} _{4}[{\text {d}}\varsigma +(1+\varepsilon {\check{\chi }}_{k}^{4}(\tau ,x^{k},\varsigma )) \mathring{N}_{k}^{4}{\text {d}}x^{k}]^{2}.\nonumber \\ \end{aligned}$$
    (B.9)

    Such flows with \(\varepsilon \)-deformations can be generated by corresponding small \(\varepsilon \)-deformations of flows generating functions.

  6. 6.

    We can impose on families (B.9) the condition that the \( \varepsilon \)-deformations depend only on evolution temperature like parameter and a time-like coordinate. This results in d-metrics

    $$\begin{aligned} ds^{2}(\tau )= & {} [1+\varepsilon \chi (\tau ,\varsigma )]\mathring{a} ^{2}(\varsigma )\{[1+\varepsilon {\check{\chi }}_{i}(\tau ,\varsigma )] \mathring{g}_{i}[{\text {d}}x^{i}]^{2} \\&+\mathring{h}_{3}[{\text {d}}y^{3}+(1+\varepsilon {\check{\chi }}_{k}^{3}(\tau ,\varsigma ))\mathring{N}_{k}^{3}{\text {d}}x^{k}]^{2}\}+\mathring{h}_{4}[{\text {d}}\varsigma +(1+\varepsilon {\check{\chi }}_{k}^{4}(\tau ,\varsigma ))\mathring{N} _{k}^{4}{\text {d}}x^{k}]^{2} \end{aligned}$$

    which can be considered as some ansatz used, for instance, for describing geometric evolution of quantum fluctuations of FLRW metrics.

In various classes of cosmological models with families of solutions with parametric \(\varepsilon \)-decompositions can be performed in a self-consistent form by omitting quadratic and higher order terms after a class of locally anisotropic solutions have been found for some general data \((\eta _{\alpha },\eta _{i}^{a}).\) They are more general than approximate solutions found, for instance, for classical and quantum fluctuations of standard FLRW metrics and may involve flow evolution parameters of cosmological constants and generating functions and sources. For certain subclasses of generic off-diagonal solutions, we can consider that \( \varepsilon _{i},\varepsilon _{a},\varepsilon _{i}^{a}\sim \varepsilon ,\) when only one small parameter is considered for all coefficients of nonholonomic deformations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bubuianu, I., Vacaru, S.I. Constantin Carathéodory axiomatic approach and Grigory Perelman thermodynamics for geometric flows and cosmological solitonic solutions. Eur. Phys. J. Plus 136, 588 (2021). https://doi.org/10.1140/epjp/s13360-021-01527-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01527-4

Navigation