Skip to main content
Log in

Disorder effect upon energy band gaps and carrier effective masses of ZnxCd1−xS

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The influence of compositional disorder on ZnxCd1−xS energy band gaps and carrier effective masses has been investigated. The calculations are performed using a pseudopotential approach under the virtual crystal approximation (VCA). A correction to the VCA has been introduced so as to take into consideration the disorder effect. Our results show that the theoretical model used in the present contribution should include the disorder effect in order to describe more accurately the fundamental band gap bowing parameter of the experimental dependence. However, the disorder effect upon electron, light-hole and heavy-hole effective masses in the material system of interest is shown to be weak. Moreover, the trend of the conduction Г, X and L valleys and the nature of the optical fundamental band gap are found to be weakly altered by the alloy disorder. The different photo-catalytic activity of wurtzite and zinc-blende CdS is discussed for a new understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. M. Isshiki, J. Wang, Wide-Bandgap II-VI Semiconductors: Growth and Properties, in Springer handbook of electronic and photonic materials. springer handbooks. ed. by S. Kasap, P. Capper (Springer, Cham, 2017)

    Google Scholar 

  2. Ii-Vi Semiconductor Blue/Green Light Emitters, volume 44, 1st Edition, Serial Eds.: R. K. Willardson, E. Weber, Serial volume Eds.: A. Nurmikko, R. Gunshor (Academic Press, 1997)

  3. S. Saib, N. Bouarissa, Phys. Status Solidi B 244(3), 1063–1069 (2007)

    Article  ADS  Google Scholar 

  4. L. Hannachi, N. Bouarissa, Phys. B 404(20), 3650–3654 (2009)

    Article  ADS  Google Scholar 

  5. D.W. Palmer, Properties of the II-VI Compound Semiconductors,WWW. Semiconductors. CO. UK.

  6. F. Benmakhlouf, A. Bechiri, N. Bouarissa, Solid State-Electron. 47(8), 1335–1338 (2003)

    Article  ADS  Google Scholar 

  7. M. Jaros, Rep. Prog. Phys. 48(8), 1091 (1985)

    Article  ADS  Google Scholar 

  8. N. Bouarissa, Phys. B 399(2), 126–131 (2007)

    Article  ADS  Google Scholar 

  9. A.R. Degheidy, E.B. Elkenany, O.A. Al-frnwani, Comput. Condens. Matter 16, 00300 (2018)

    Google Scholar 

  10. S. Zerroug, F. Ali Sahraoui, N. Bouarissa, Eur. Phys. J. B 57(1), 9–14 (2007)

    Article  ADS  Google Scholar 

  11. A.R. Degheidy, E.B. Elkenany, O.A. Al-frnwani, Comput. Condens. Matter 16, e00310 (2018)

    Article  Google Scholar 

  12. L. Hannachi, N. Bouarissa, Superlattice. Microstruct. 44(6), 794–801 (2008)

    Article  ADS  Google Scholar 

  13. N. Bouarissa, Mater. Sci. Eng. B 86(1), 53–59 (2001)

    Article  Google Scholar 

  14. F. Mezrag, W. Kara Mohamed, N. Bouarissa, Physica B 405(9), 2272–2276 (2010)

    Article  ADS  Google Scholar 

  15. S. Adachi, Properties of Semiconductor Alloys: Group-IV, III–V and II–VI Semiconductors (John Wiley and Sons Ltd., Chichester, 2009) and references therein.

  16. P. Chen, J.E. Nicholls, M. O’Neill, J.H.C. Hogg, B. Lunn, D.E. Ashenford, M. Fay, A.G. Cullis, Semicond. Sci. Technol. 13(12), 1439 (1998)

    Article  ADS  Google Scholar 

  17. J. Torres, J.I. Cisneros, G. Gordillo, F. Alvarez, Thin Solid Films 289(1–2), 238–241 (1996)

    Article  ADS  Google Scholar 

  18. J. Zhang, S. Wageh, A.A. Al-Ghamdi, J. Yu, Appl. Catalys. B: Environm. 192, 101–107 (2016)

    Article  Google Scholar 

  19. N. Bouarissa, Mater. Chem. Phys. 100(1), 41–47 (2006)

    Article  Google Scholar 

  20. S.J. Lee, T.S. Kwon, K. Nahm, C.K. Kim, J. Phys. Condens. Matter 2(14), 3253 (1990)

    Article  ADS  Google Scholar 

  21. N. Bouarissa, Phys. Lett. A 245(3–4), 285–291 (1998)

    Article  ADS  Google Scholar 

  22. N. Bouarissa, Superlattice. Microstruct. 26(4), 279–287 (1999)

    Article  ADS  Google Scholar 

  23. A. Bechiri, F. Benmakhlouf, N. Bouarissa, Mater. Chem. Phys. 77(2), 507–510 (2003)

    Article  Google Scholar 

  24. M.L. Cohen, J.R. Chelikowsky, Electronic Structure and Optical Properties of Semiconductors (Springer, Berlin, 1988).

    Book  Google Scholar 

  25. R.M. Martin, Electronic Structure: Basic Theory and Practical Methods (Cambridge University Press, Berlin, 2004).

    Book  Google Scholar 

  26. T. Kobayasi, H. Nara, Bull. Coll. Med. Sci. Tohuku Univ. 2, 7–16 (1993)

    Google Scholar 

  27. A. Bechiri, N. Bouarissa, Superlattice Microst. 39(6), 478–488 (2006)

    Article  ADS  Google Scholar 

  28. N. Bouarissa, M. Boucenna, Phys. Scr. 79(1), 015701 (2009)

    Article  ADS  Google Scholar 

  29. Y.P. Feng, K.L. Teo, M.F. Li, H.C. Poon, C.K. Ong, J.B. Xia, J. Appl. Phys. 74(6), 3948–3955 (1993)

    Article  ADS  Google Scholar 

  30. U. Lunz, C. Schumacher, J. Nurmberger, K. Schull, A. Gerhard, U. Schüssler, B. Jobst, W. Faschinger, G. Landwehr, Semicond. Sci. Technol. 12(8), 970 (1997)

    Article  ADS  Google Scholar 

  31. O. Madelung (ed.), Semiconductors-Basic Data (Springer, Berlin, 1996)

    Google Scholar 

  32. K. Kassali, N. Bouarissa, Mater. Chem. Phys. 76(3), 255–261 (2002) and references therein.

  33. L. Vegard, Z. Phys. 5, 17–26 (1921)

    Article  ADS  Google Scholar 

  34. N. Bouarissa, J. Phys. Chem. Solids. 67(7), 1440–1443 (2006)

    Article  ADS  Google Scholar 

  35. P. Liao, E.A. Carter, Chem. Soc. Rev. 42, 2401 (2013)

    Article  Google Scholar 

  36. M. Dong, J.F. Zhang, J. Yu, Appl. Phys. Lett. Mater. 3, 104404 (2015)

    Google Scholar 

  37. T. Yokogawa, T. Ishikawa, J.L. Merz, T. Taguchi, J. Appl. Phys. 75(4), 2189–2193 (1994)

    Article  ADS  Google Scholar 

  38. N. Bouarissa, S. Bougouffa, A. Kamli, Semicond. Sci. Technol. 20(3), 265 (2005)

    Article  ADS  Google Scholar 

  39. W. Nakwaski, Physica B 210(1), 1–25 (1995) and references therein.

  40. S. Adachi, J. Appl. Phys. 58(3), R1–R29 (1985)

    Article  ADS  Google Scholar 

  41. S. Adachi, Properties of Group-IV, III-V, and II-VI Semiconductors (Wiley, Chichester, 2005).

    Book  Google Scholar 

  42. T.L. Bahers, M. Rérat, P. Sautet, J. Phys. Chem. C 118, 5993 (2014)

    Article  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Nadir Bouarissa supervised the findings of this work and performed the computations. Fadila Mezrag verified the analytical methods; and Najoua Turki-Kamoun developed the theory. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Fadila Mezrag.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouarissa, N., Mezrag, F. & Turki-Kamoun, N. Disorder effect upon energy band gaps and carrier effective masses of ZnxCd1−xS. Eur. Phys. J. Plus 136, 724 (2021). https://doi.org/10.1140/epjp/s13360-021-01526-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01526-5

Navigation