Skip to main content
Log in

Impact of alloying on the bandgap energy in nano-sized ternary semiconducting compounds

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The variation in bandgap energy with decreased size and varying composition of alloys has attracted the attention of researchers over the past few decades. In the present paper, a simple unified model is presented to study the impact of alloying on the bandgap energy of ternary semiconducting compounds with varying composition. The energy bandgap is determined for semiconducting homogeneous nano-compounds with zinc-blende and wurtzite structure, including ZnxCd1−xS, ZnxCd1−xSe, Cd(S)x(Se)1−x, and Cd(Se)x(Te)1−x. The model does not involve any adjustable parameters. The study provides insight into the impact of size, dimension, and composition on the energy bandgap of the material and the possibility of tuning the optical properties of semiconducting compounds by alloying, as alloyed compounds could be more stable and have higher luminescence than single semiconducting nanocrystal with a narrower energy bandgap. The model predictions are in good accord with the available experimental and simulated data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Guisbiers, G., Cruz, R.M., Díaz, L.B., Salazar, J.J.V., Perez, R.M., Torres, J.A.R., Lopez, J.L.R., Carrizales, J.M.M., Whetten, R.L., Yacamán, M.J.: Electrum, the gold−silver alloy, from the bulk scale to the nanoscale: synthesis, properties, and segregation rules. ACS Nano 10(1), 188 (2016)

    Article  CAS  PubMed  Google Scholar 

  2. Sun, C.Q.: Size dependence of nanostructures: impact of bond order deficiency. Prog. Solid State Chem. 35, 1 (2007)

    Article  Google Scholar 

  3. Rizzo, A., Li, Y., Kudera, S., Sala, F.D.: Blue light emitting diodes based on fluorescent CdSe∕ZnS nanocrystals. Appl. Phys. Lett. 90, 051106 (2007)

    Article  ADS  Google Scholar 

  4. Guisbiers, G., Pérez, R.M., Díaz, L.B., Cruz, R.M., Salazar, J.J.V., Yacaman, M.J.: Size and shape effects on the phase diagrams of nickel-based bimetallic nanoalloys. J. Phys. Chem. C 121, 6930 (2017)

    Article  CAS  Google Scholar 

  5. Giroire, B., Marre, S., Garcia, A., Cardinal, T., Aymonier, C.: Continuous supercritical route for quantum-confined GaN nanoparticles. React. Chem. Eng. 1, 151 (2016)

    Article  CAS  Google Scholar 

  6. Guisbiers, G., Wautelet, M., Buchaillot, L.: Phase diagrams and optical properties of phosphide, arsenide, and antimonide binary and ternary III–V nanoalloys. Phys. Rev. B 79(15), 155426 (2009)

    Article  ADS  Google Scholar 

  7. Vishwanatha, R., Sapra, S., Dasgupta, T.S., Sharma, D.D.: Electronic structure of and quantum size effect in III–V and II–VI semiconducting nanocrystals using a realistic tight binding approach. Phys. Rev. B 72, 045333 (2005)

    Article  ADS  Google Scholar 

  8. Li, J., Wang, L.W.: Band-structure-corrected local density approximation study of semiconductor quantum dots and wires. Phys. Rev. B 72, 125325 (2005)

    Article  ADS  Google Scholar 

  9. Kayanuma, Y.: Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape. Phys. Rev. B 38, 9797 (1988)

    Article  ADS  CAS  Google Scholar 

  10. Wang, Y., Ouyang, G., Wang, L.L., Tang, L.M., Tang, D.S., Sun, C.Q.: Size- and composition-induced band-gap change of nanostructured compound of II–VI semiconductors. Chem. Phys. Lett. 463(4), 383 (2008)

    Article  ADS  CAS  Google Scholar 

  11. Ustundag, M., Yalcin, B.G., Aslan, M., Bagci, S.: The optoelectronic properties of Sb doped BBi compounds. Acta Phys. Pol. Ser. A 130, 98 (2016)

    Article  ADS  CAS  Google Scholar 

  12. Yang, Y.H., Chen, Y.T.: Solvothermal preparation and spectroscopic characterization of copper indium diselenide nanorods. J. Phys. Chem. B 110(35), 17370 (2006)

    Article  CAS  PubMed  Google Scholar 

  13. Gao, L., Gao, F.: Band gap prediction for composition-tunable alloyed semiconductor nanocrystals. Appl. Phys. Lett. 103, 053101 (2013)

    Article  ADS  Google Scholar 

  14. Zhu, Y.F., Lang, X.Y., Jiang, Q.: The effect of alloying on the bandgap energy of nanoscaled semiconductor alloys. Adv. Funct. Mater. 18(9), 1427 (2008)

    Article  Google Scholar 

  15. Liang, L.H., Liu, D., Jiang, Q.: Size-dependent continuous binary solution phase diagram. Nanotechnology 14, 438 (2003)

    Article  ADS  CAS  Google Scholar 

  16. Regulacio, M.D., Han, M.Y.: Composition-tunable alloyed semiconductor nanocrystals. Acc. Chem. Res. 43(5), 621 (2010)

    Article  CAS  PubMed  Google Scholar 

  17. Pokutnyi, S.I.: Interband absorption of light in semiconductor nanostructures. Semiconductors 37(6), 718 (2003)

    Article  ADS  CAS  Google Scholar 

  18. Trwoga, P.F., Kenyon, A.J., Pitt, C.W.: Modeling the contribution of quantum confinement to luminescence from silicon nanoclusters. J. Appl. Phys. 83, 3789 (1998)

    Article  ADS  CAS  Google Scholar 

  19. Glinka, Y.D., Lin, S.H., Hwang, L.P., Chen, Y.T., Tolk, N.H.: Size effect in self-trapped exciton photoluminescence from SiO2-based nanoscale materials. Phys. Rev. B 64, 085421 (2001)

    Article  ADS  Google Scholar 

  20. Bailey, R.E., Nie, S.: Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. J. Am. Chem. Soc. 125(23), 7100 (2003)

    Article  CAS  PubMed  Google Scholar 

  21. Qi, W.H.: Size effect on melting temperature of nanosolids. Phys. B 368, 46 (2005)

    Article  ADS  CAS  Google Scholar 

  22. Shanker, J., Kumar, M.: Studies on melting of alkali halides. Phys. Status Solidi B 158, 11 (1990)

    Article  ADS  CAS  Google Scholar 

  23. Qi, W.H.: Nanoscopic thermodynamics. Acc. Chem. Res. 49, 1587 (2016)

    Article  CAS  PubMed  Google Scholar 

  24. Li, M., Li, J.C.: Size effects on the band-gap of semiconductor compounds. Mater. Lett. 60, 2526 (2006)

    Article  CAS  Google Scholar 

  25. Guisbiers, G.: Size-dependent materials properties toward a universal equation. Nanoscale Res. Lett. 5, 1132 (2010). https://doi.org/10.1007/s11671-010-9614-1

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vegard, L.: Die konstitution der mischkristalle und die raumfüllung der atome. Z. Phys. 5, 17 (1921). https://doi.org/10.1007/BF01349680

    Article  ADS  CAS  Google Scholar 

  27. Shimaoka, G., Suzuki, Y.: Preparation and optical properties of ZnxCd1−xS films. Appl. Surf. Sci. 113/114, 528 (1997)

    Article  ADS  CAS  Google Scholar 

  28. Zhong, X., Liu, S., Zhang, Z., Li, L., Wei, Z., Knoll, W.: Synthesis of high-quality CdS, ZnS, and ZnxCd1−xS nanocrystals using metal salts and elemental sulfur. J. Mater. Chem. 14(18), 2790 (2004)

    Article  CAS  Google Scholar 

  29. Petrov, D.V., Santos, B.S., Pereira, G.A.L., de Mello Donega, C.: Size and band-gap dependences of the first hyperpolarizability of CdxZn1-xS nanocrystals. J. Phys. Chem. B 106, 5325 (2002)

    Article  CAS  Google Scholar 

  30. Zhong, X., Feng, Y., Knoll, W., Han, M.: Alloyed ZnxCd1-xS nanocrystals with highly narrow luminescence spectral width. J. Am. Chem. Soc. 125(44), 13559 (2003)

    Article  CAS  PubMed  Google Scholar 

  31. Ray, S.C., Karanjai, M.K., Das Gupta, D.: Deposition and characterization of ZnxCd1−xS thin films prepared by the dip technique. Thin Solid Films 322(1–2), 117 (1998)

    Article  ADS  CAS  Google Scholar 

  32. Barreca, D., Gasparotto, A., Maragno, C., Tondello, E., Sada, C.: CVD of nanophasic (Zn, Cd)s thin films: from multi-layers to solid solutions. Chem. Vap. Depos. 10(4), 229 (2004)

    Article  CAS  Google Scholar 

  33. Ge, J.P., Xu, S., Zhuang, J., Wang, X., Peng, Q., Yi, Y.D.: Synthesis of CdSe, ZnSe, and ZnxCd1-xSe nanocrystals and their silica sheathed core/shell structures. Inorg. Chem. 45(13), 4922 (2006)

    Article  CAS  PubMed  Google Scholar 

  34. Venugopal, R., Lin, P.I., Chen, Y.T.: Photoluminescence and Raman scattering from catalytically grown ZnxCd1-xSe alloy nanowires. J. Phys. Chem. B 110, 11691 (2006)

    Article  CAS  PubMed  Google Scholar 

  35. Shan, C.X., Liu, Z., Ng, C.M., Hark, S.K.: ZnxCd1-xSe alloy nanowires covering the entire compositional range grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 87(3), 033108 (2005)

    Article  ADS  Google Scholar 

  36. Zhang, X.T., Liu, Z., Li, Q., Hark, S.K.: Growth and luminescence of ternary semiconductor ZnCdSe nanowires by metalorganic chemical vapor deposition. J. Phys. Chem. B 109(38), 17913 (2005)

    Article  CAS  PubMed  Google Scholar 

  37. Zhong, X.H., Han, M.Y., Dong, Z.L., White, T.J., Noll, W.K.: Composition-tunable ZnxCd1-xSe nanocrystals with high luminescence and stability. J. Am. Chem. Soc. 125, 8589 (2003)

    Article  CAS  PubMed  Google Scholar 

  38. Swafford, L.A., Weigand, L.A., Bowers, M.J., McBride, J.R., Rapaport, J.L., Watt, T.L., Dixit, S.K., Feldman, L.C., Rosenthal, S.J.: Homogeneously alloyed CdSxSe1-x nanocrystals: synthesis, characterization, and composition/size-dependent band gap. J. Am. Chem. Soc. 128, 12299 (2006)

    Article  CAS  PubMed  Google Scholar 

  39. Perna, G., Pagliara, S., Capozzi, V., Ambrico, M., Ligonzo, T.: Optical characterization of CdSxSe1−x films grown on quartz substrate by pulsed laser ablation technique. Thin Solid Films 349(1–2), 220 (1999)

    Article  ADS  CAS  Google Scholar 

  40. Perna, G., Pagliara, S., Capozzi, V., Ambrico, M., Pallara, M.: Excitonic luminescence of CdSxSe1−x films deposited by laser ablation on Si substrate. Solid State Commun. 114(3), 161 (2000)

    Article  ADS  CAS  Google Scholar 

  41. Pan, A., Liu, R., Wang, F., Xie, S., Zou, B., Zacharias, M., Wang, Z.L.: High-quality alloyed CdSxSe1-x whiskers as waveguides with tunable stimulated emission. J. Phys. Chem. B 110(45), 22313 (2006)

    Article  CAS  PubMed  Google Scholar 

  42. Liang, Y., Zhai, L., Zhao, X., Xinsheng, X., Xu, D.: Band-gap engineering of semiconductor nanowires through composition modulation. J. Phys. Chem. B 109(15), 7120 (2005)

    Article  CAS  PubMed  Google Scholar 

  43. Choi, Y.J., Hwang, I.S., Park, J.H., Nahm, S., Park, J.G.: Band gap modulation in CdSxSe1−x nanowires synthesized by a pulsed laser ablation with the Au catalyst. Nanotechnology 17(15), 3775 (2006)

    Article  ADS  CAS  Google Scholar 

  44. Li, Y.C., Zhong, H.Z., Li, R., Zhou, Y., Yang, C.H., Li, Y.F.: High-yield fabrication and electrochemical characterization of tetrapodal CdSe, CdTe, and CdSexTe1–x nanocrystals. Adv. Funct. Mater. 16(13), 1705 (2006)

    Article  CAS  Google Scholar 

  45. Muthukumarasamy, N., Jayakumar, S., Kannan, M.D., Balasundaraprabhu, R., Ramanathaswamy, P.: Structural and optical properties of hot wall deposited CdSe0.15Te0.85 thin films. J. Cryst. Growth 263(1), 308 (2004)

    Article  ADS  CAS  Google Scholar 

  46. Ammar, A.H.: Some studies on structural and optical properties of ZnxCd1−xSe thin films. Vacuum 60(3), 355 (2001)

    Article  ADS  CAS  Google Scholar 

  47. Sutrave, D.S., Shahane, G.S., Patil, V.B., Deshmukh, L.P.: Micro-crystallographic and optical studies on Cd1−xZnxSe thin films. Mater. Chem. Phys. 65(3), 298 (2000)

    Article  CAS  Google Scholar 

Download references

Funding

Funding is not provided by any agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Goyal.

Ethics declarations

Competing interests

The author has no competing interests to declare that are relevant to the content of this article. The manuscript has no associated data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyal, M. Impact of alloying on the bandgap energy in nano-sized ternary semiconducting compounds. J Comput Electron 23, 12–21 (2024). https://doi.org/10.1007/s10825-023-02115-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-023-02115-8

Keywords

Navigation