Skip to main content

Advertisement

Log in

Fabrication of TeO2-doped strontium borate glasses possessing optimum physical, structural, optical and gamma ray shielding properties

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Glasses with composition of (60 − x) TeO2 − 10SrO − (30 + x) B2O3 were fabricated by melt quenching method. The structural features have been studied using X-ray diffraction (XRD) and FTIR. The derivative of absorption spectra fitting (DASF) method has been utilized to determine the optical band-gap energy. The measured band-gap energies takes values 3.521, 3.558, 3.581, 3.620 and 3.669 eV for the BSrTe60, BSrTe55, BSrTe50, BSrTe45 and BSrTe40, respectively. The band-gap energies increase with a decrease in the mol% of concentration of TeO2. The transitions involved are found to be indirect transitions. The MCNP-5 simulation code was put to use in estimating gamma photons' mean path length in the material. The lowest linear attenuation coefficient (µ) values lie within the range of 0.162 and 0.107 cm−1 and are detected around 8 MeV. The LAC values decreased linearly with substituting the TeO2 by B2O3 content. The lowest half-value layer (HVL) is found at low energy (around 0.005 cm at 0.015 MeV). The mean free path (MFP) decreases linearly with increasing the TeO2 content and followed the trend: (MFP)BSrTe60 < (MFP) BSrTe55 < (MFP) BSrTe50 < (MFP) BSrTe45 < (MFP) BSrTe40. The MFP of BSrTe60 and BSrTe55 at 0.662 MeV is 2.620 and 2.950 cm, and this is lower than the MFP of some commercial glasses such as RS 253 (MFP = 5.263 cm, RS 253-G18 (MFP = 5.263 cm), RS 323-G19 (MFP = 3.571 cm) and RS 360 (MFP = 3.125 cm) at the same energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig.9
Fig.10
Fig.11
Fig.12
Fig.13

Similar content being viewed by others

References

  1. M.H.A. Mhareb, Physical, optical and shielding features of Li2O–B2O3–MgO–Er2O3 glasses co-doped of Sm2O3. Appl. Phys. A 126, 71 (2020)

    Article  ADS  Google Scholar 

  2. A.H. Almuqrin, M.I. Sayyed, Radiation shielding characterizations and investigation of TeO2–WO3–Bi2O3 and TeO2–WO3–PbO glasses. Appl. Phys. A 127, 190 (2021)

    Article  ADS  Google Scholar 

  3. Y.S. Alajerami, D. Drabold, M.H.A. Mhareb, K. Leslee, A. Cimatu, G. Chen, M. Kurudirek, Radiation shielding properties of bismuth borate glasses doped with different concentrations of cadmium oxides. Ceram. Int. 46, 12718–12726 (2020)

    Article  Google Scholar 

  4. S. Yasmin, B.S. Barua, M.U. Khandaker, M.A. Rashid, D.A. Bradley, M.A. Olatunji, M. Kamal, Studies of ionizing radiation shielding effectiveness of silica-based commercial glasses used in Bangladeshi dwellings. Results Phys. 9, 541–549 (2018)

    Article  ADS  Google Scholar 

  5. Y. Al-Hadeethi, M.S. Al-Buriahi, M.I. Sayyed, Bioactive glasses and the impact of Si3N4 doping on the photon attenuation up to radiotherapy energies. Ceram. Int. 46(4), 5306–5314 (2020)

    Article  Google Scholar 

  6. K.A. Mahmoud, O.L. Tashlykov, A.F. El Wakil, I.E. El Aassy, Aggregates grain size and press rate dependence of the shielding parameters for some concretes. Prog. Nucl. Energy 118, 103092 (2020)

    Article  Google Scholar 

  7. K.A. Mahmoud, M.I. Sayyed, O.L. Tashlykov, Comparative studies between the shielding parameters of concretes with different additive aggregates using MCNP-5 simulation code. Radiat. Phys. Chem. 165, 108426 (2019)

    Article  Google Scholar 

  8. B. Pomaro, A review on radiation damage in concrete for nuclear facilities: from experiments to modeling. Modell. Simul. Eng. 2016, 4165746 (2016). https://doi.org/10.1155/2016/4165746

    Article  Google Scholar 

  9. T. Özdemir, A. Güngör, I.K. Akbay, H. Uzun, Y. Babucçuoglu, Nano lead oxide and epdm composite for development of polymer based radiation shielding material: gamma irradiation and attenuation tests. Radiat. Phys. Chem. 144, 248–255 (2018)

    Article  ADS  Google Scholar 

  10. M. Dong, X. Xue, A. Kumar, H. Yang, M.I. Sayyed, S. Liu, E. Bu, A novel method of utilization of hot dip galvanizing slag using the heat waste from itself for protection from radiation. J. Hazard. Mater. 344, 602–614 (2018)

    Article  Google Scholar 

  11. S. Yasmin, Z.S. Rozaila, M.U. Khandaker, B.S. Barua, F.U.Z. Chowdhury, M.A. Rashid, D.A. Bradley, The radiation shielding offered by the commercial glass installed in Bangladeshi dwellings. Radiat. Eff. Defects Solids 173(7–8), 657–672 (2018)

    Article  ADS  Google Scholar 

  12. S. Yasmin, B.S. Barua, M.U. Khandaker, M.T. Chowdhury, M. Kamal, M.A. Rashid, M.M.H. Miah, D.A. Bradley, Investigation of ionizing radiation shielding effectiveness of decorative building materials used in Bangladeshi dwellings. Radiat. Phys. Chem. 140, 98–102 (2017)

    Article  ADS  Google Scholar 

  13. U. Perişanoğlu, F.I. El-Agawany, E. Kavaz, M.S. Al-Buriahi, Y.S. Rammah, Surveying of Na2O3–BaO–PbO–Nb2O5–SiO2–Al2O3 glass-ceramics system in terms of alpha, proton, neutron and gamma protection features by utilizing GEANT4 simulation codes. Ceram. Int. 46, 3190–3202 (2020)

    Article  Google Scholar 

  14. A.M. El-Khayatt, A.M. Ali, V.P. Singh, Photon attenuation coefficients of heavy metal oxide glasses by MCNP code, XCOM program and experimental data: a comparison study, . Nuclear Instrum. Methods Phys. Res. Sect. A Accelerators Spectrom. Detectors Assoc. Equip. Special Issues 735, 207–212 (2014)

    Article  ADS  Google Scholar 

  15. M.I. Sayyed, Z.Y. Khattari, A. Kumar, J. Al-Jundi, M.G. Dong, M.Y. AlZaatreh, Radiation shielding parameters of BaO–Nb2O5–P2O5 glass system using MCNP 5 code and XCOM software. Mater. Res. Express 5, 115203 (2018)

    Article  ADS  Google Scholar 

  16. R. Sharma, V. Sharma, P.S. Singh, T. Singh, Effective atomic numbers for some calcium–strontium-borate glasses. Ann. Nucl. Energy 45, 144–149 (2012)

    Article  Google Scholar 

  17. Y. Al-Hadeethi, M.I. Sayyed, BaO–Li2O–B2O3 glass systems: potential utilization in gamma radiation protection. Prog. Nucl. Energy 129, 103511 (2020)

    Article  Google Scholar 

  18. M.I. Sayyed, Y. Al-Hadeethi, M.M. AlShammari, S.H. Ahmed, Y.S.R. Al-Heniti, Physical, optical and gamma radiation shielding competence of newly borotellurite based glasses: TeO2–B2O3–ZnO–Li2O3–Bi2O3. Ceram. Int. 47, 611–618 (2021)

    Article  Google Scholar 

  19. R. Bagheri, K.M. Alireza, Y. Hassan, Gamma ray shielding study of barium-bismuthborosilicate glasses as transparent shielding materials using MCNP-4C code, XCOM program, and available experimental data. Nucl. Eng. Technol. 49, 216–223 (2017)

    Article  Google Scholar 

  20. M.I. Sayyed, R. El-Mallawany, Shielding properties of (100–x) TeO2-(x)MoO3 glasses. Mater. Chem. Phys. 201, 50–56 (2017)

    Article  Google Scholar 

  21. M.I. Sayyed, K.A. Mahmoud, E. Lacomme, M.M. AlShammari, Y.S.M. Nidal Dwaikat, M.A. Alajerami, B.O. El-bashir, M.H.A. Mhareb, Development of a novel MoO3-doped borate glass network for gamma-ray shielding applications. Eur. Phys. J. Plus 136, 108 (2021). https://doi.org/10.1140/epjp/s13360-020-01011-5

    Article  Google Scholar 

  22. A. Kumar, M.I. Sayyed, M. Dong, X. Xue, Effect of PbO on the shielding behavior of ZnO–P2O5 glass system using Monte Carlo simulation. J. Non-Cryst. Solids 48, 604–607 (2018)

    Article  ADS  Google Scholar 

  23. E. Hakan Akyildirim, F.I. Kavaz, E. El-Agawany, Y.S.R. Yousef, Radiation shielding features of zirconolite silicate glasses using XCOM and FLUKA simulation code. J. Non-Cryst. Solids 545, 120245 (2020)

    Article  Google Scholar 

  24. S. Kaewjaeng, S. Kothan, W. Chaiphaksa, N. Chanthima, R. Rajaramakrishna, H.J. Kim, J. Kaewkhao, High transparency La2O3–CaO–B2O3–SiO2 glass for diagnosis x-rays shielding material application. Radiat. Phys. Chem. 160, 41–47 (2019)

    Article  ADS  Google Scholar 

  25. A.M. Ali, M.I. Sayyed, M. Rashad, A. Kumar, R. Kaur, A. Aşkın, H. Algarni, Gamma ray shielding behavior of Li2O doped PbO–MoO3–B2O3 glass system. Appl. Phys. A 125, 671 (2019)

    Article  ADS  Google Scholar 

  26. A. Kumar, R. Kaur, M.I. Sayyed, M. Rashad, M. Singh, A.M. Ali, Physical, structural, optical and gamma ray shielding behavior of (20 + x) PbO–10 BaO–10 Na2O–10 MgO–(50–x) B2O3 glasses. Phys. B 552, 110–118 (2019)

    Article  ADS  Google Scholar 

  27. X-5 Monte Carlo Team, MCNP-A General Monte Carlo N-Particle Transport Code, Version 5, Los Alamos Controlled Publication. LA-CP-03–0245 (2003)

  28. M.J. Berger, J. H. Hubbel, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, DS. Zucker. XCOM: Photon Cross Sections Database. https://doi.org/10.18434/T48G6X (2010)

  29. G.P. Singh, S. Kaur, P. Kaur, D.P. Singh, Modification in structural and optical properties of ZnO, CeO2 doped Al2O3–PbO–B2O3 glasses. Phys. B 407, 1250–1255 (2012)

    Article  ADS  Google Scholar 

  30. V.C. Veeranna Gowda, Physical, thermal, infrared and optical properties of Nd3+ doped lithium–lead-germanate glasses. Phys. B 456, 298–305 (2015)

    Article  ADS  Google Scholar 

  31. M.H.A. Mhareb, S. Hashim, S.K. Ghoshal, Y.S.M. Alajerami, M.J. Bqoor, A.I. Hamdan, M.A. Saleh, M.K.B. Abdul Karim, Effect of Dy2O3 impurities on the physical, optical and thermoluminescence properties of lithium borate glass. J. Lumin. 177, 366–372 (2016)

    Article  Google Scholar 

  32. R. Kaur, V. Bhatia, D. Kumar, S.M.D. Rao, S.P. Singh, A. Kumar, Physical, structural, optical and thermoluminescence behavior of Dy2O3 doped sodium magnesium borosilicate glasses. Results Phys. 12, 827–839 (2019)

    Article  ADS  Google Scholar 

  33. D. Saritha, Y. Markandeya, M. Salagram, M. Vithal, A.K. Singh, G. Bhikshamaiah, Effect of Bi2O3 on physical, optical and structural studies of ZnO–Bi2O3–B2O3 glasses. J. Non-Cryst. Solids 354, 5573–5579 (2008)

    Article  ADS  Google Scholar 

  34. J.A. Duffy, Optical basicity: A practical acid-base theory for oxides and oxyanions. J. Chem. Educ. 73, 1138 (1996)

    Article  Google Scholar 

  35. J.A. Duffy, M.D. Ingram, Comments on the application of optical basicity to glass. J. Non-Cryst. Solids 144, 76–80 (1992)

    Article  ADS  Google Scholar 

  36. H.M. Gomaa, M.I. Sayyed, H.O. Tekin, G. Lakshminarayana, A.H. ELDosokey, Correlate the structural changes to gamma radiation shielding performance evaluation for some calcium bismuth-borate glasses containing Nb2O5. Physica B Phys. Condens. Matter 567, 109–112 (2019)

    Article  ADS  Google Scholar 

  37. B. Srinivas, A. Hameed, G. Srinivas, M. Narasimha Chary, Md. Shareefuddin, Influence of V2O5 on physical and spectral (optical, EPR and FTIR) studies SrO–TeO2–TiO2–B2O3 glasses. Optik 225, 165815 (2021)

    Article  ADS  Google Scholar 

  38. G. Lakshminarayana, K.M. Kaky, S.O. Baki, A. Lira, P. Nayar, I.V. Kityk, M.A. Mahdi, Physical, structural, thermal, and optical spectroscopy studies of TeO2-B2O3-MoO3-ZnO-R2O (R = Li, Na, and K)/MO (M= Mg, Ca, and Pb) glasses. J. Alloys Compd. 609, 799–819 (2017)

    Article  Google Scholar 

  39. A.M. Azhra, C.Y. Zahra, DSC and Raman studies of lead borate and lead silicate glasses. J. Non-Cryst. Solids 155, 45–55 (1993)

    Article  ADS  Google Scholar 

  40. R. Divina, G. Sathiyapriya, K. Marimuthu, A. Askin, M.I. Sayyed, Structural, elastic, optical and γ-ray shielding behavior of Dy3+ ions doped heavy metal incorporated borate glasses. J. Non-Cryst. Solids 545, 120269 (2020)

    Article  Google Scholar 

  41. M.M. Hivrekar, D.B. Sable, M.B. Solunke, K.M. Jadhav, Network structure analysis of modifier CdO doped sodium borate glass using FTIR and Raman spectroscopy. J. Non-Cryst. Solids 474, 58–65 (2017)

    Article  ADS  Google Scholar 

  42. M. Djamal, L. Yuliantini, R. Hidayat, N. Rauf, M. Horprathum, R. Rajaramakrishna, K. Boonin, P. Yasaka, J. Kaewkhao, V. Venkatramu, S. Kothan, Spectroscopic study of Nd3+ ion-doped Zn–Al–Ba borate glasses for NIR emitting device applications. Opt. Mater. 107, 110018 (2020)

    Article  Google Scholar 

  43. S. Khan, G. Kaur, K. Singh, Effect of ZrO2 on dielectric, optical and structural properties of yttrium calcium borosilicate glasses. Ceram. Int. 43, 722–727 (2017)

    Article  Google Scholar 

  44. A.A. El-Maaref, K.H.S. Shaaban, M. Abdelawwad, Y.B. Saddeek, Optical characterizations and Judd–Ofelt analysis of Dy3+ doped borosilicate glasses. Opt. Mater. 72, 169–176 (2017)

    Article  ADS  Google Scholar 

  45. D. Souri, Z.E. Tahan, A new method for the determination of optical band gap and the nature of optical transitions in semiconductors. Appl. Phys. B 119, 273–279 (2015)

    Article  ADS  Google Scholar 

  46. N. Yıldız Yorgun, E. Kavaz, H.O. Tekin, M.I. Sayyed, Ö.F. Özdemirs, Borax effect on gamma and neutron shielding features of lithium borate glasses: an experimental and Monte Carlo studies. Mater. Res. Express 6, 115217 (2019)

    Article  ADS  Google Scholar 

  47. N. Yıldız Yorgun, Gamma-ray shielding parameters of Li2B4O7 glasses: undoped and doped with magnetite, siderite and Zinc-Borate minerals cases. Radiochim. Acta 107(8), 755–765 (2019)

    Article  Google Scholar 

  48. Ö. Eyecioğlu, A.M. El-Khayatt, Y. Karabul, M. Çağlar, O. Toker, O. İçelli, BXCOM: a software for computation of radiation sensing. Radiat. Eff. Defects Solids 174, 506–518 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program to support publication in the top journal (Grant no. 42-FTTJ-15).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ashok Kumar or Mohammed Alotiby.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alotaibi, B.M., Sayyed, M.I., Kumar, A. et al. Fabrication of TeO2-doped strontium borate glasses possessing optimum physical, structural, optical and gamma ray shielding properties. Eur. Phys. J. Plus 136, 468 (2021). https://doi.org/10.1140/epjp/s13360-021-01418-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01418-8

Navigation