Skip to main content
Log in

Experimental investigation of thermo-physical properties of MgO-MWCNT (75–25%)/10W40 as a new nano-lubricant

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this study, the MWCNT-MgO (25–75%)/10W40 hybrid nano-lubricant was prepared via a two-step method and was experimentally investigated in the solid volume fraction (SVF) range of 0–1%, the temperature (T) range of 5–55 °C, and the shear rate (SR) range of 6665–11,997 s−1. MWCNT and MgO nanoparticles (NPs) with a volume ratio of 25–75 were used to provide the NPs, and experiments were conducted at 6 Ts in the range of 5–55 °C. The results indicated that viscosity (VI) of nano-lubricant increases and decreases, respectively, with increasing SVF and temperature (T), in a way that the maximum VI drops (− 5%) were observed at 15 and 25 °C, and at 0.05% SVF. Likewise, the highest VI increase (+ 26%) was observed at 45 °C and SVF of 1%. It was observed that the VI of the nano-lubricant at SVF of 1% and in the studied T range, with a mean of 16.13%, was higher than the VI of pure oil. The effect of NPs presence on VI was lower than that of the base fluid (BF) at lower Ts, as, at a T of 15 °C, the VI of this hybrid nano-lubricant increased by 20.3% and at 55 °C increased by 16%.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

m:

Consistency index

N:

Number of experiments

S:

Standard deviation

n:

Power law index

T:

Temperature

U:

Uncertainty

w:

Weight

\(\overline X\) :

Average measured value

X i :

Measured value

Exp.:

Experimental

Max:

Maximum

MgO:

Magnesium Oxide

Min:

Minimum

MWCNT:

Multiwall carbon nanotube

NF:

Nanofluid

NP:

Nanoparticle

SSA:

Specific surface area (total surface area of a material per unit of mass)

SVF:

Solid volume fraction

TEM:

Transmission electron microscopy

XRD:

X-ray diffraction

φ :

Solid volume fraction

\(\dot{\gamma }\) :

Shear rate

μ :

Viscosity

μ r :

Relative viscosity

ρ :

Density

τ :

Shear stress

bf:

Base fluid

nf:

Nanofluid

r:

Relative

References

  1. G.M. Moldoveanu, C. Ibanescu, M. Danu, A.A. Minea, Viscosity estimation of Al2O3, SiO2 nanofluids and their hybrid: an experimental study. J. Mol. Liq. 253, 188–196 (2018)

    Article  Google Scholar 

  2. A.A. Nadooshan, M.H. Esfe, M. Afrand, Prediction of Rheological behavior of SiO2-MWCNTs/10W40 hybrid nanolubricant by designing neural network. J. Thermal Anal. Calorim. 131(3), 2741–2748 (2018)

    Article  Google Scholar 

  3. M.H. Esfe, S. Saedodin, M. Biglari, H. Rostamian, Experimental investigation of thermal conductivity of CNTs-Al2O3/water: a statistical approach. Int. Commun. Heat Mass Trans. 69, 29–33 (2015)

    Article  Google Scholar 

  4. M.H. Esfe, S.M. Motallebi, M. Bahiraei, Employing response surface methodology and neural network to accurately model thermal conductivity of TiO2–water nanofluid using experimental data. Chin. J. Phys. 70, 14–25 (2021)

    Article  Google Scholar 

  5. S.U.S. Chol, Enhancing thermal conductivity of fluids with nanoparticles. ASME-Publications-Fed 231, 99–106 (1995)

    Google Scholar 

  6. M.H. Esfe, S. Wongwises, A. Naderi, A. Asadi, M.R. Safaei, H. Rostamian, M. Dahari, A. Karimipour, Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: Experimental data and modeling using artificial neural network and correlation. Int. Commun. Heat Mass Trans 66, 100–104 (2015)

    Article  Google Scholar 

  7. M.H. Esfe, A.A.A. Arani, M. Rezaie, W.M. Yan, A. Karimipour, Experimental determination of Thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid. Int. Commun. Heat Mass Trans. 66, 189–195 (2015)

    Article  Google Scholar 

  8. M.H. Esfe, W.M. Yan, M. Akbari, A. Karimipour, M. Hassani, Experimental study on Thermal conductivity of DWCNT-ZnO/water-EG nanofluids. Int. Commun. Heat Mass Trans. 68, 248–251 (2015)

    Article  Google Scholar 

  9. M.H. Esfe, S.M. Motallebi, Optimization, modeling, and prediction of relative viscosity and relative thermal conductivity of AlN nano-powders suspended in EG. Eur. Phys. J. Plus 136(1), 1–19 (2021)

    Article  Google Scholar 

  10. M.H. Esfe, E. Hosseinizadeh, S. Esfandeh, Flooding numerical simulation of heterogeneous oil reservoir using different nanoscale colloidal solutions. J. Molec. Liquids 302, 111972 (2020)

    Article  Google Scholar 

  11. M.H. Esfe, S. Esfandeh, 3D numerical simulation of the enhanced oil recovery process using nanoscale colloidal solution flooding. J. Molec. Liquids 301, 112094 (2020)

    Article  Google Scholar 

  12. M.H. Esfe, S. Esfandeh, E. Hosseinizadeh, Nanofluid flooding for enhanced oil recovery in a heterogeneous two-dimensional anticline geometry. Int. Commun. Heat Mass Trans. 118, 104810 (2020)

    Article  Google Scholar 

  13. M.H. Esfe, S. Esfandeh, Nanofluid flooding in a randomized heterogeneous porous media and investigating the effect of capillary pressure and diffusion on oil recovery factor. J. Molec. Liquids, p. 113646 (2020)

  14. M.H. Esfe, S.M. Motallebi, Optimization and modeling of thermal conductivity and viscosity of Cu/engine oil nanofluids by NSGA‐II using RSM. Math. Methods Appl. Sci. (2020)

  15. M. Hatami, G. Domairry, S.N. Mirzababaei, Experimental investigation of preparing and using the H2O based nanofluids in the heating process of HVAC system model. Int. J. Hydrogen Energy 42(12), 7820–7825 (2017)

    Article  Google Scholar 

  16. G.R. Ansarifar, M. Ebrahimian, Design and neutronic investigation of the nano fluids application to VVER-1000 nuclear reactor with dual cooled annular fuel. Ann. Nucl. Energy 87, 39–47 (2016)

    Article  Google Scholar 

  17. Z. Said, M.H. Sajid, M.A. Alim, R. Saidur, N.A. Rahim, Experimental investigation of the thermophysical properties of Al2O3-nanofluid and its effect on a flat plate solar collector. Int. Commun. Heat Mass Transf. 48, 99–107 (2013)

    Article  Google Scholar 

  18. M. Hemmat Esfe, Designing a neural network for predicting the heat transfer and pressure drop characteristics of Ag/water nanofluids in a heat exchanger. Appl. Therm. Eng. 126, 559–565 (2017)

    Article  Google Scholar 

  19. M. Hemmat Esfe, S. Esfandeh, S. Saedodin, H. Rostamian, Experimental evaluation, sensitivity analyzation and ANN modeling of thermal conductivity of ZnO-MWCNT/EG-water hybrid nanofluid for engineering applications. Appl. Therm. Eng. 125, 673–685 (2017)

    Article  Google Scholar 

  20. I. Wole-Osho, E.C. Okonkwo, D. Kavaz, S. Abbasoglu, An experimental investigation into the effect of particle mixture ratio on specific heat capacity and dynamic viscosity of Al2O3–ZnO hybrid nanofluids. Powder Technol. 363, 699–716 (2020)

    Article  Google Scholar 

  21. G. Huminic, A. Huminic, C. Fleacă, F. Dumitrache, I. Morjan, Experimental study on viscosity of water based Fe–Si hybrid nanofluids. J. Mol. Liq. 321, 114938 (2021)

    Article  Google Scholar 

  22. M.H. Esfe, S.H. Rostamian, Rheological behavior characteristics of MWCNT-TiO2/EG (40–60%) hybrid nanofluid affected by temperature, concentration, and shear rate: an experimental and statistical study and a neural network simulating. Physica A 553, 124061 (2020)

    Article  Google Scholar 

  23. W. Urmi, M.M. Rahman, W.A.W. Hamzah, An experimental investigation on the thermophysical properties of 40% ethylene glycol based TiO2–Al2O3 hybrid nanofluids. Int. Commun. Heat Mass Transf. 116, 104663 (2020)

    Article  Google Scholar 

  24. A. Asadi, I.M. Alarifi, L.K. Foong, An experimental study on characterization, stability and dynamic viscosity of CuO-TiO2/water hybrid nanofluid. J. Mol. Liq. 307, 112987 (2020)

    Article  Google Scholar 

  25. A. Barati-Harooni, A. Najafi-Marghmaleki, A. Mohebbi, A.H. Mohammadi, On the estimation of viscosities of Newtonian nanofluids. J. Mol. Liq. 241, 1079–1090 (2017)

    Article  Google Scholar 

  26. M. Hemmat Esfe, F. Zabihi, H. Rostamian, S. Esfandeh, Experimental investigation and model development of the non-Newtonian behavior of CuO-MWCNT-10w40 hybrid nano-lubricant for lubrication purposes. J. Mol. Liq. 249, 677–687 (2018)

    Article  Google Scholar 

  27. S. Aberoumand, A. Jafarimoghaddam, M. Moravej, H. Aberoumand, K. Javaherdeh, Experimental study on the rheological behavior of silver-heat transfer oil nanofluid and suggesting two empirical based correlations for thermal conductivity and viscosity of oil based nanofluids. Appl. Therm. Eng. 101, 362–372 (2016)

    Article  Google Scholar 

  28. M. Asadi, A. Asadi, Dynamic viscosity of MWCNT/ZnO–engine oil hybrid nanofluid: an experimental investigation and new correlation in different temperatures and solid concentrations. Int. Commun. Heat Mass Transf. 76, 41–45 (2016)

    Article  Google Scholar 

  29. M. Hemmat Esfe, S. Saedodin, M. Rejvani, J. Shahram, Experimental investigation, model development and sensitivity analysis of rheological behavior of ZnO/10W40 nano-lubricants for automotive applications. Physica E 90, 194–203 (2017)

    Article  ADS  Google Scholar 

  30. A. Aghaei, H. Khorasanizadeh, G.A. Sheikhzadeh, Measurement of the dynamic viscosity of hybrid engine oil-Cuo-MWCNT nanofluid, development of a practical viscosity correlation and utilizing the artificial neural network. Heat Mass Transf. 54(1), 151–161 (2018)

    Article  ADS  Google Scholar 

  31. M. Hemmat Esfe, H. Rostamian, M.R. Sarlak, M. Rejvani, A. Alirezaie, Rheological behavior characteristics of TiO2-MWCNT/10W40 hybrid nano-oil affected by temperature, concentration and shear rate: an experimental study and a neural network simulating. Physica E 94, 231–240 (2017)

    Article  ADS  Google Scholar 

  32. M. Hemmat Esfe, M.R. Sarlak, Experimental investigation of switchable behavior of CuO-MWCNT (85–15%)/10W-40 hybrid nano-lubricants for applications in internal combustion engines. J. Mol. Liq. 242, 326–335 (2017)

    Article  Google Scholar 

  33. A. Asadi, M. Asadi, M. Rezaei, M. Siahmargoi, F. Asadi, The effect of temperature and solid concentration on dynamic viscosity of MWCNT/MgO (20–80)–SAE50 hybrid nano-lubricant and proposing a new correlation: an experimental study. Int. Commun. Heat Mass Transf. 78, 48–53 (2016)

    Article  Google Scholar 

  34. A. Aghaei, H. Khorasanizadeh, G.A. Sheikhzadeh, Experimental measurement of the dynamic viscosity of hybrid engine oil-Cuo-MWCNT nanofluid and development of a practical viscosity correlation. Modares Mech. Eng. 16(12), 518–524 (2017)

    Google Scholar 

  35. A. Alirezaie, S. Saedodin, M.H. Esfe, S.H. Rostamian, Investigation of rheological behavior of MWCNT (COOH-functionalized)/MgO-engine oil hybrid nanofluids and modelling the results with artificial neural networks. J. Mol. Liq. 241, 173–181 (2017)

    Article  Google Scholar 

  36. J.W. Goodwin, R.W. Hughes, Rheology for Chemists: An Introduction (Royal Society of Chemistry, London, 2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hemmat Esfe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemmat Esfe, M., Goodarzi, M. & Esfandeh, S. Experimental investigation of thermo-physical properties of MgO-MWCNT (75–25%)/10W40 as a new nano-lubricant. Eur. Phys. J. Plus 136, 605 (2021). https://doi.org/10.1140/epjp/s13360-021-01414-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01414-y

Navigation