Skip to main content
Log in

Transition metal-doped Bn (n = 7−10) clusters: confirmation of a circular disk Jellium model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Using a genetic algorithm combined with density functional theory calculations, we have performed a systematic global search for the low-lying structures of 4d and 5d transition metal (M)-doped Bn clusters with n = 7–10. Diverse structural patterns have been identified as the ground state for MBn clusters, i.e., half-sandwich for early transition metal dopants, wheel-like configuration for middle transition metal dopants, quasi-planar and umbrella-like structures for late transition metal dopants. Among them, the half-sandwich RhB7, IrB7, RuB8 and OsB8; wheel-like IrB9; and umbrella-like AgB9 and AuB9 clusters have relatively high stability, which are not only stabilized by the closed-shell occupation following a circular disk Jellium model, but also enhanced by aromaticity with the π bonds distributed over the circular disk. Our results not only enrich the family of 2D superatomic clusters but also advance the fundamental understanding of the metal-doped boron clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. C. Romanescu, T.R. Galeev, W.L. Li, A.I. Boldyrev, L.S. Wang, Acc. Chem. Res. 46(2), 350 (2013)

    Article  Google Scholar 

  2. L.M. Yang, E. Ganz, Z. Chen, Z.X. Wang, P.V.R. Schleyer, Angew. Chem. Int. Ed. 54(33), 9468 (2015)

    Article  Google Scholar 

  3. B.P.T. Fokwa, M. Hermus, Angew. Chem. Int. Ed. 51, 1702 (2012)

    Article  Google Scholar 

  4. Q. Zheng, M. Kohout, R. Gumeniuk, N. Abramchuk, H. Borrmann, Y. Prots, U. Burkhardt, W. Schnelle, L. Akselrud, H. Gu, A. Leithe-Jasper, Y. Grin, Inorg. Chem. 51(14), 7472 (2012)

    Article  Google Scholar 

  5. J.J. Zhao, Q.Y. Du, S. Zhou, V. Kumar, Chem. Rev. 120, 9021 (2020)

    Article  Google Scholar 

  6. W.L. Li, X. Chen, T. Jian, T.T. Chen, J. Li, L.S. Wang, Nat Rev Chem 1, 0071 (2017)

    Article  Google Scholar 

  7. I. Boustani, Phys. Rev. B 55(24), 16426 (1997)

    Article  ADS  Google Scholar 

  8. A.N. Alexandrova, A.I. Boldyrev, H.J. Zhai, L.-S. Wang, Coord. Chem. Rev. 250, 2811 (2006)

    Article  Google Scholar 

  9. L.-S. Wang, Int. Rev. Phys. Chem. 35(1), 69 (2016)

    Article  Google Scholar 

  10. X. Wu, L. Sai, S. Zhou, P. Zhou, M. Chen, M. Springborg, J. Zhao, Phys. Chem. Chem. Phys. 22, 12959 (2020)

    Article  Google Scholar 

  11. H.J. Zhai, A.N. Alexandrova, K.A. Birch, A.I. Boldyrev, L.S. Wang, Angew. Chem. Int. Ed. 42, 6004 (2003)

    Article  Google Scholar 

  12. D.Y. ZubarevA, I. Boldyrev, J. Comput. Chem. 28(1), 251 (2007)

    Article  Google Scholar 

  13. Z. YangS, J. Xiong, J. Chem. Phys. 128(18), 184310 (2008)

    Article  ADS  Google Scholar 

  14. T.R. Galeev, C. Romanescu, W.L. Li, L.S. Wang, A.I. Boldyrev, J. Chem. Phys. 135(10), 104301 (2011)

    Article  ADS  Google Scholar 

  15. W.L. Li, C. Romanescu, T.R. Galeev, L.S. Wang, A.I. Boldyrev, J. Phys. Chem. A 115(38), 10391 (2011)

    Article  Google Scholar 

  16. C. Romanescu, T.R. Galeev, W.L. Li, A.I. Boldyrev, L.S. Wang, Angew. Chem. Int. Ed. 50(40), 9334 (2011)

    Article  Google Scholar 

  17. C. Romanescu, T.R. Galeev, A.P. Sergeeva, W.L. Li, L.S. Wang, A.I. Boldyrev, J. Organomet. Chem. 721–722, 148 (2012)

    Article  Google Scholar 

  18. A.C. ReberS, N. Khanna, J. Chem. Phys. 142(5), 054304 (2015)

    Article  ADS  Google Scholar 

  19. K. Ito, Z. Pu, Q.S. Li, P.V.R. Schleyer, Inorg. Chem. 47(23), 10906 (2008)

    Article  Google Scholar 

  20. Z. Pu, K. Ito, P.V.R. Schleyer, Q.S. Li, Inorg. Chem. 48(22), 10679 (2009)

    Article  Google Scholar 

  21. W.L. Li, C. Romanescu, R. Timur, Z.A. Piazza, A.I. Boldyrev, L.S. Wang, J. Am. Chem. Soc. 134(1), 165 (2012)

    Article  Google Scholar 

  22. T.R. Galeev, C. Romanescu, W.L. Li, L.S. Wang, A.I. Boldyrev, Angew. Chem. Int. Ed. 51(9), 2101 (2012)

    Article  Google Scholar 

  23. T.T. Chen, W.L. Li, H. Bai, W.J. Chen, X.R. Dong, J. Li, L.S. Wang, J. Phys. Chem. A 123(25), 5317 (2019)

    Article  Google Scholar 

  24. X. Liu, G.-F. Zhao, L.-J. Guo, Q. Jing, Y.-H. Luo, Phys. Rev. A 75, 063201 (2007)

    Article  ADS  Google Scholar 

  25. T.T. Chen, W.L. Li, J. Tian, C. Xin, J. Li, L.S. Wang, Angew. Chem. Int. Ed. 56(24), 6916 (2017)

    Article  Google Scholar 

  26. P. Li, T. Mei, L. Lv, C. Lu, W. Wang, G. Bao, G.L. Gutsev, J. Phys. Chem. A 121(34), 6510 (2017)

    Article  Google Scholar 

  27. P. Li, G. Sun, J. Bai, W. Wang, G. Bao, C. Lu, New J. Chem. 41, 11208 (2017)

    Article  Google Scholar 

  28. L.F. Cheung, J. Czekner, G.S. Kocheril, L.-S. Wang, J. Am. Chem. Soc. 2019(141), 17854 (2019)

    Article  Google Scholar 

  29. L.F. Cheung, G.S. Kocheril, J. Czekner, L.-S. Wang, J. Phys. Chem. A 2020(124), 2820 (2020)

    Article  Google Scholar 

  30. B. Chen, W. Sun, X. Kuang, C. Lu, X. Xia, H. Shi, G.L. Gutsev, Phys. Chem. Chem. Phys. 20(48), 30376 (2018)

    Article  Google Scholar 

  31. B.L. Chen, W.G. Sun, X.Y. Kuang, C. Lu, X.X. Xia, H.X. Shi, G. Maroulis, Inorg. Chem. 57, 343 (2018)

    Article  Google Scholar 

  32. W.L. Li, C. Romanescu, Z.A. Piazza, L.S. Wang, Phys. Chem. Chem. Phys. 14(39), 13663 (2012)

    Article  Google Scholar 

  33. I.A. Popov, W.-L. Li, Z.A. Piazza, A.I. Boldyrev, L.S. Wang, J. Phys. Chem. A 118, 8098 (2014)

    Article  Google Scholar 

  34. J. Zhao, R. Shi, L. Sai, X. Huang, Y. Su, Mol. Simulat. 42(10), 809 (2016)

    Article  Google Scholar 

  35. B.J. Delley, J. Chem. Phys. 113(18), 7756 (2000)

    Article  ADS  Google Scholar 

  36. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78(7), 1396 (1997)

    Article  ADS  Google Scholar 

  37. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77(7), 3865 (1996)

    Article  ADS  Google Scholar 

  38. L. Sai, X. Wu, N. Gao, J. Zhao, R.B. King, Nanoscale 9, 13905 (2017)

    Article  Google Scholar 

  39. Y. Wang, X. Wu, J. Zhao, J. Clust. Sci. 29(5), 847 (2018)

    Article  Google Scholar 

  40. X. Wu, S.J. Lu, X. Liang, X. Huang, Y. Qiu, M. Chen, J. Zhao, H.G. Xu, R.B. King, W. Zheng, J. Chem. Phys. 146(4), 044306 (2017)

    Article  ADS  Google Scholar 

  41. S. Zhou, Y. Zhao, J. Zhao, Chin. J. Struct. Chem. 39, 1185 (2020)

    Google Scholar 

  42. C. Adamo, V. Barone, J. Chem. Phys. 110(13), 6158 (1999)

    Article  ADS  Google Scholar 

  43. G.D. Purvis, J. Bartlett, J. Chem. Phys. 76(4), 1910 (1982)

    Article  ADS  Google Scholar 

  44. D.Y. ZubarevA, I. Boldyrev, Phys. Chem. Chem. Phys. 10(34), 5207 (2008)

    Article  Google Scholar 

  45. T. Lu, F. Chen, J. Comput. Chem. 33(5), 580 (2012)

    Article  Google Scholar 

  46. Z. ChenR, B. King, Chem. Rev. 105(10), 3613 (2005)

    Article  Google Scholar 

  47. E. Steiner, P.W. Fowler, L.W. Jenneskens, Angew. Chem. Int. Ed. Engl. 40(2), 362 (2001)

    Article  Google Scholar 

  48. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, (Gaussian Inc, Wallingford, 2009)

  49. H.J. Zhai, B. Kiran, J. Li, L.S. Wang, Nat. Mater. 2(12), 827 (2003)

    Article  ADS  Google Scholar 

  50. R.G. ParrR, G. Pearson, J. Am. Chem. Soc. 105(26), 7512 (1983)

    Article  Google Scholar 

  51. R.G. Pearson, J. Chem. Sci. 117(5), 369 (2005)

    Article  Google Scholar 

  52. W.Z. Yao, J.B. Yao, X.B. Li, S.D. Li, Acta Phys. Chim. Sin. 29(6), 1219 (2013)

    Article  Google Scholar 

  53. W.Z. Yao, Z.H. Lu, S.D. Li, Acta Phys. Chim. Sin. 30(12), 2233 (2014)

    Article  Google Scholar 

  54. S.M. Reimann, M. Koskinen, H. Hakkinen, P.E. Lindelof, M. Manninen, Phys. Rev. B 56(19), 12147 (1997)

    Article  ADS  Google Scholar 

  55. S.M. Reimann, M. Koskinen, J. Helgesson, P.E. Lindelof, M. Manninen, Phy. Rev. B 58(12), 8111 (1998)

    Article  ADS  Google Scholar 

  56. H. Hakkinen, U. Landman, Phys. Rev. B 62(4), R2287 (2000)

    Article  ADS  Google Scholar 

  57. E. Janssens, H. Tanaka, S. Neukermans, R.E. Silverans, P. Lievens, New J. Phys. 5, 46 (2003)

    Article  ADS  Google Scholar 

  58. T. HoLtzl, P. Lievens, T. VeszpreMi, M.T. Nguyen, J. Phys. Chem. C 113(49), 21016 (2009)

    Article  Google Scholar 

  59. P. Saha, A.B. Rahane, V. Kumar, N. Sukumar, Phys. Scr. 91, 053005 (2016)

    Article  ADS  Google Scholar 

  60. H. HaKkinen, Adv. Phys. X 1(30), 467 (2016)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (91961204, 11804076, 11974068 and 11904251), the Fundamental Research Funds for the Central Universities of China (DUT20LAB110) and the Supercomputing Center of Dalian University of Technology. We thank Prof. Vijay Kumar in Shiv Nadar University for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Si Zhou or Jijun Zhao.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3815 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Wang, Y., Zhao, X. et al. Transition metal-doped Bn (n = 7−10) clusters: confirmation of a circular disk Jellium model. Eur. Phys. J. Plus 136, 328 (2021). https://doi.org/10.1140/epjp/s13360-021-01315-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01315-0

Navigation