Skip to main content
Log in

Quasi Kepler’s third law for quantum many-body systems

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The Kepler’s third law is a relation between the period and the energy of two classical particles interacting via a gravitational potential. Recent works showed that this law could be extended, at least approximately, to classical three-body systems, or even many-body classical systems. So, a classical quasi Kepler’s third law seems to exist. In this paper, approximate analytical solutions are computed for quantum self-gravitating particles with different masses. The results give strong indications in favor of the existence of a quasi Kepler’s third law for such systems. The relevance of the proposal is checked with accurate numerical data for the ground state of self-gravitating identical bosons and with numerical estimations for systems with identical particles plus a different one. Connections between the quantum and classical systems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. V. Dmitrašinović, M. Šuvakov, Topological dependence of Kepler’s third law for collisionless periodic three-body orbits with vanishing angular momentum and equal masses. Phys. Lett. A 379, 1939 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  2. X.M. Li, S.J. Liao, More than six hundred new families of Newtonian periodic planar collisionless three-body orbits. Sci. China Phys. Mech. Astron. 60, 129511 (2017)

    Article  ADS  Google Scholar 

  3. X. Li, Y. Jing, S. Liao, Over a thousand new periodic orbits of a planar three-body system with unequal masses. Publ. Astron. Soc. Jpn. 70, 64 (2018)

    ADS  Google Scholar 

  4. X. Li, S. Liao, Collisionless periodic orbits in the free-fall three-body problem. New Astron. 70, 22 (2019)

    Article  ADS  Google Scholar 

  5. M. Šuvakov, V. Dmitrašinović, A guide to hunting periodic three-body orbits. Am. J. Phys. 82, 609 (2014)

    Article  ADS  Google Scholar 

  6. B.H. Sun, Kepler’s third law of \(n\)-body periodic orbits in a Newtonian gravitation field. Sci. China Phys. Mech. Astron. 61, 054721 (2018)

    Article  ADS  Google Scholar 

  7. C.-Y. Zhao, M.-J. Zhang, A conjecture on Kepler’s third law of n-body periodic orbits. arXiv:1811.00735

  8. C. Semay, Quantum support to BoHua Sun’s conjecture. Res. Phys. 13, 102167 (2019)

    Google Scholar 

  9. C. Semay, C. Willemyns, Equivalent period for a stationary quantum system. Res. Phys. 14, 102476 (2019)

    Google Scholar 

  10. B.H. Sun, Classical and quantum Kepler’s third law of \(N\)-Body System. Res. Phys. 13, 102144 (2019)

    Google Scholar 

  11. W. Lucha, Relativistic virial theorems. Mod. Phys. Lett. A 5, 2473 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  12. Y. İpekoğlu, S. Turgut, An elementary derivation of the quantum virial theorem from Hellmann–Feynman theorem. Eur. J. Phys. 37, 045405 (2016)

    Article  Google Scholar 

  13. C. Semay, L. Cimino, C. Willemyns, Envelope theory for systems with different particles. Few-Body Syst. 61, 19 (2020)

    Article  ADS  Google Scholar 

  14. J. Horne, J.A. Salas, K. Varga, Energy and structure of few-boson systems. Few-Body Syst. 55, 1245 (2014)

    Article  ADS  Google Scholar 

  15. R.L. Hall, Energy trajectories for the \(N\)-boson problem by the method of potential envelopes. Phys. Rev. D 22, 2062 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  16. R.L. Hall, Schrödinger’s equation with linear combinations of elementary potentials. Phys. Rev. D 23, 1421 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  17. R.L. Hall, A geometrical theory of energy trajectories in quantum mechanics. J. Math. Phys. 24, 324 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  18. R.L. Hall, Spectral geometry and the \(N\)-body problem. Phys. Rev. A 51, 3499 (1995)

    Article  ADS  Google Scholar 

  19. R.L. Hall, W. Lucha, F.F. Schöberl, Relativistic \(N\)-boson systems bound by pair potentials \(V(r_{ij}) = g(r^2_{ij})\). J. Math. Phys. 45, 3086 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  20. R. Gibara, R.L. Hall, Potential envelope theory and the local energy theorem. J. Math. Phys. 60, 062103 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  21. B. Silvestre-Brac, C. Semay, F. Buisseret, F. Brau, The quantum \({N}\)-body problem and the auxiliary field method. J. Math. Phys. 51, 032104 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  22. C. Semay, C. Roland, Approximate solutions for \(N\)-body Hamiltonians with identical particles in \(D\) dimensions. Res. Phys. 3, 231 (2013)

    Google Scholar 

  23. C. Semay, Improvement of the envelope theory with the dominantly orbital state method. Eur. Phys. J. Plus 130, 156 (2015)

    Article  ADS  Google Scholar 

  24. C. Semay, Numerical tests of the envelope theory for few-boson systems. Few-Body Syst. 56, 149 (2015)

    Article  ADS  Google Scholar 

  25. C. Semay, L. Cimino, Tests of the envelope theory in one dimension. Few-Body Syst. 60, 64 (2019)

    Article  ADS  Google Scholar 

  26. A.A. Lobashev, N.N. Trunov, A universal effective quantum number for centrally symmetric problems. J. Phys. A 42, 345202 (2009)

    Article  MathSciNet  Google Scholar 

  27. R.L. Hall, B. Schwesinger, The complete exact solution to the translation-invariant \(N\)-body harmonic oscillator problem. J. Math. Phys. 20, 2481 (1979)

    Article  ADS  Google Scholar 

  28. Z.-Q. Ma, Exact solutions to the \(N\)-body Schrödinger equation for the harmonic oscillator. Found. Phys. Lett. 13, 167 (2000)

    Article  MathSciNet  Google Scholar 

  29. M. Šindik, A. Sugita, M. Šuvakov, V. Dmitrašinović, Periodic three-body orbits in the Coulomb potential. Phys. Rev. E 98, 060101(R) (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fonds de la Recherche Scientifique-FNRS under Grant No. 4.45.10.08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Semay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semay, C., Willemyns, C.T. Quasi Kepler’s third law for quantum many-body systems. Eur. Phys. J. Plus 136, 342 (2021). https://doi.org/10.1140/epjp/s13360-021-01313-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01313-2

Navigation