Skip to main content
Log in

New physics effects on quantum coherence in neutrino oscillations

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Several measures of quantum correlations such as Leggett–Garg and Bell-type inequalities have been extensively studied in the context of neutrino oscillations. However, these analyses are performed under the assumption of standard model (SM) interactions of neutrinos. In this work, we study new physics effects on \(l_1\)-norm based measure of quantum coherence which quantifies the quantumness embedded in the system and is also intrinsically related to various measures of quantum correlations. Moreover, it is considered to be a resource theoretical tool which can be utilized in quantum algorithms and quantum channel discrimination. The new physics effects are incorporated in a model independent way by using the effective Lagrangian for the neutral current non-standard neutrino interactions (NSI). Bounds on the NSI parameters are extracted from a recent global analysis of oscillation experiments including COHERENT (coherent neutrino-nucleus scattering experiment) data. In the context of upcoming DUNE experimental setup, we find that the most favourable combination of LMA-Light sector of \(\theta _{12}\) (i.e., \(\theta _{12}< 45^{\circ }\)) with normal mass ordering decreases the coherence in the system in comparison to the SM prediction for all values of neutrino energy E and CP violating phase \(\delta \) (except in the narrow region around \(E \sim \) 2 GeV). On the other hand, a large enhancement in the value of coherence parameter in the entire \((E-\delta )\) plane is possible for the dark octant of \(\theta _{12}\) (\(\theta _{12}> 45^{\circ }\)) with inverted ordering. For almost all values of CP violating phase, the enhancement is more protuberant in the region around \(E \sim \) 4 GeV where maximum neutrino flux is expected in the DUNE experiment. Therefore for the normal mass ordering, the SM interaction provides favourable conditions for quantum information tasks while the NSI favours inverted ordering scenario for such tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Although the dynamics of the mesonic system is also driven by weak interactions, owing to its short lifetime, this system would be more suitable for understanding foundational issues rather than having any applicational implications.

  2. Solar neutrino data is found to disfavor the LMA-Dark solution with confidence level below 2\(\sigma \). However, LMA-D provides an equally good fit to the LBL data (specifically T2K data). Hence we have considered LMA-Light with NO and LMA-Dark with IO as most favoured solutions.

  3. We converted the unit of matter density potential from \(\mathrm{g/cm}^3\) to eV using \(A = 7.6 \times \,Y_e\, \rho \times 10^{-14} \), where \(Y_e = N_e/(N_e + N_n)\). Here \(N_e\) and \(N_n\) are the number densities of electrons and neutrons in the Earth and \(\rho \) is the matter density in \(\mathrm{g/cm}^3\). We then have \(Y_e \approx 0.48\) and \(\rho = 2.8\,\mathrm{g/cm}^3\) which are convenient for Earth’s matter as shown by Dziewonski et al. [69]. Hence, the value of A turns out to be \( \approx 1.01 \times 10^{-13}\) eV.

References

  1. Q.R. Ahmad et al. (SNO Collaboration), Phys. Rev. Lett. 89, 011302 (2002)

  2. S. Fukuda et al., Super-Kamiokande Collaboration. Phys. Lett. B 539, 179–187 (2002)

  3. T. Araki et al., KamLAND Collaboration. Phys. Rev. Lett. 94, 081801 (2005)

    Article  ADS  Google Scholar 

  4. K. Abe et al., T2K Collaboration. Phys. Rev. Lett. 107, 041801 (2011)

    Article  ADS  Google Scholar 

  5. J.A. Formaggio, D.I. Kaiser, M.M. Murskyj, T.E. Weiss, Phys. Rev. Lett. 117(5), 050402 (2016)

    Article  ADS  Google Scholar 

  6. D.D. Stancil et al., Mod. Phys. Lett. A 27, 1250077 (2012)

    Article  ADS  Google Scholar 

  7. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  Google Scholar 

  8. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  9. A.J. Leggett, A. Garg, Phys. Rev. Lett. 54, 857 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  10. J.S. Bell, Physics Physique Fizika 1, 195 (1964)

    Article  MathSciNet  Google Scholar 

  11. M. Blasone et al., Phys. Rev. D 77, 096002 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  12. M. Blasone, F. Dell’Anno, S. De Siena, F. Illuminati, EPL 85, 50002 (2009)

    Article  ADS  Google Scholar 

  13. A.K. Alok, S. Banerjee, S.U. Sankar, Nucl. Phys. B 909, 65 (2016)

    Article  ADS  Google Scholar 

  14. S. Banerjee, A.K. Alok, R. Srikanth, B.C. Hiesmayr, Eur. Phys. J. C 75(10), 487 (2015)

    Article  ADS  Google Scholar 

  15. K. Dixit, J. Naikoo, S. Banerjee, A.K. Alok, Eur. Phys. J. C 78(11), 914 (2018)

    Article  ADS  Google Scholar 

  16. Q. Fu, X. Chen, Eur. Phys. J. C 77(11), 775 (2017)

    Article  ADS  Google Scholar 

  17. J. Naikoo, A.K. Alok, S. Banerjee, S. Uma Sankar, G. Guarnieri, C. Schultze, B.C. Hiesmayr, Nucl. Phys. B 951, 114872 (2020)

  18. M. Richter-Laskowska, M. Łobejko, J. Dajka, New J. Phys. 20(6), 063040 (2018)

    Article  ADS  Google Scholar 

  19. M. Blasone, P. Jizba, L. Smaldone, Phys. Rev. D 99(1), 016014 (2019)

    Article  ADS  Google Scholar 

  20. J. Naikoo, A. Kumar Alok, S. Banerjee, S. Uma Sankar, Phys. Rev. D 99(9), 095001 (2019)

    Article  ADS  Google Scholar 

  21. J.L. Cereceda, Phys. Rev. A 66, 024102 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  22. C. Emary, Phys. Rev. A 87, 032106 (2013)

    Article  ADS  Google Scholar 

  23. X.K. Song, Y. Huang, J. Ling, M.H. Yung, Phys. Rev. A 98, 050302(R) (2018)

    Article  ADS  Google Scholar 

  24. A. Streltsov, U. Singh, H.S. Dhar, M.N. Bera, G. Adesso, Phys. Rev. Lett. 115, 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  25. T. Baumgratz, M. Cramer, M.B. Plenio, Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  26. U. Singh, M.N. Bera, H.S. Dhar, A.K. Pati, Phys. Rev. A 91, 052115 (2015)

    Article  ADS  Google Scholar 

  27. J.M. Matera, D. Egloff, N. Killoran, M.B. Plenio, Quantum Sci. Technol. 1, 01LT01 (2016)

    Article  Google Scholar 

  28. M. Piani, M. Cianciaruso, T.R. Bromley, C. Napoli, N. Johnston, G. Adesso, Phys. Rev. A 93, 042107 (2016)

    Article  ADS  Google Scholar 

  29. A. Winter, D. Yang, Phys. Rev. Lett. 116, 120404 (2016)

    Article  ADS  Google Scholar 

  30. M. Richter, B. Dziewit, J. Dajka, Phys. Rev. D 96, 076008 (2017)

    Article  ADS  Google Scholar 

  31. S. Weinberg, Phys. Rev. Lett. 43, 1566–1570 (1979). https://doi.org/10.1103/PhysRevLett.43.1566

    Article  ADS  Google Scholar 

  32. W. Buchmuller, D. Wyler, Nucl. Phys. B 268, 621–653 (1986). https://doi.org/10.1016/0550-3213(86)90262-2

    Article  ADS  Google Scholar 

  33. M.B. Krauss, J. Phys. Conf. Ser. 447, 012039 (2013)

    Article  Google Scholar 

  34. K.S. Babu, S. Nandi, Z. Tavartkiladze, Phys. Rev. D 80, 071702 (2009)

    Article  ADS  Google Scholar 

  35. L. Wolfenstein, Phys. Rev. D 17, 2369–2374 (1978)

    Article  ADS  Google Scholar 

  36. J.W.F. Valle, Phys. Lett. B 199(3), 432–436 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  37. M.M. Guzzo, A. Masiero, S.T. Petcov, Phys. Lett. B 260(1–2), 154–160 (1991)

    Article  ADS  Google Scholar 

  38. Y. Grossman, Phys. Lett. B 359, 141 (1995)

    Article  ADS  Google Scholar 

  39. P. Krastev, J. N. Bahcall, FCNC solutions to the solar neutrino problem, Symposium on Flavor Changing Neutral Currents: Present and Futue studies (FCNC 97), pp. 259-263, 2 (1997) [hep-ph/9703267]

  40. G. Brooijmans, A Supersymmetric Solution to the Solar and Atmospheric Neutrino Anomalies, hep-ph/9808498

  41. M.C. Gonzalez-Garcia et al., Phys. Rev. Lett. 82, 3202–3205 (1999)

    Article  ADS  Google Scholar 

  42. S. Bergmann et al., Phys. Rev. D 62, 073001 (2000)

    Article  ADS  Google Scholar 

  43. M.M. Guzzo et al., Phys. Rev. D 64(9), 097301 (2001)

    Article  ADS  Google Scholar 

  44. M.M. Guzzo et al., Nucl. Phys. B 629, 479–490 (2002)

    Article  ADS  Google Scholar 

  45. S. Antusch, J.P. Baumann, E. Fernandez-Martinez, Nucl. Phys. B 810, 369 (2009)

    Article  ADS  Google Scholar 

  46. T. Ohlsson, Rept. Prog. Phys. 76, 044201 (2013)

    Article  ADS  Google Scholar 

  47. O.G. Miranda, H. Nunokawa, New J. Phys. 17 (2015) no.9, 095002 https://doi.org/10.1088/1367-2630/17/9/095002 [arXiv:1505.06254 [hep-ph]]

  48. Y. Farzan, Phys. Lett. B 748, 311–315 (2015). https://doi.org/10.1016/j.physletb.2015.07.015

    Article  ADS  Google Scholar 

  49. Y. Farzan, I.M. Shoemaker, JHEP 07, 033 (2016). https://doi.org/10.1007/JHEP07(2016)033

    Article  ADS  Google Scholar 

  50. K.S. Babu, A. Friedland, P.A.N. Machado, I. Mocioiu, JHEP 12, 096 (2017). https://doi.org/10.1007/JHEP12(2017)096

    Article  ADS  Google Scholar 

  51. P.B. Denton, Y. Farzan, I.M. Shoemaker, JHEP 07, 037 (2018). https://doi.org/10.1007/JHEP07(2018)037

    Article  ADS  Google Scholar 

  52. Y. Farzan, M. Tortola, Front. in Phys. 6, 10 (2018)

    Article  ADS  Google Scholar 

  53. A. Falkowski, G. Grilli di Cortona, Z. Tabrizi, JHEP 1804, 101 (2018)

    Article  ADS  Google Scholar 

  54. I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler, J. Salvado, JHEP 1808, 180 (2018)

    Article  ADS  Google Scholar 

  55. I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, JHEP 1906, 055 (2019)

    Article  ADS  Google Scholar 

  56. R. Acciarri et al. [DUNE Collaboration], arXiv:1512.06148 [physics.ins-det]

  57. S. Davidson, C. Pena-Garay, N. Rius, A. Santamaria, JHEP 03, 011 (2003). https://doi.org/10.1088/1126-6708/2003/03/011

    Article  ADS  Google Scholar 

  58. C. Biggio, M. Blennow, E. Fernandez-Martinez, JHEP 08, 090 (2009). https://doi.org/10.1088/1126-6708/2009/08/090

    Article  ADS  Google Scholar 

  59. C. Biggio, M. Blennow, E. Fernandez-Martinez, JHEP 03, 139 (2009). https://doi.org/10.1088/1126-6708/2009/03/139

    Article  ADS  Google Scholar 

  60. C. Giunti, C.W. Kim, Fundamentals of Neutrino Physics and Astrophysics (2007)

  61. S.P. Mikheyev, A.Y. Smirnov, Sov. J. Nucl. Phys. 42, 913–917 (1985) [Yad. Fiz. 42, 1441–1448 (1985)]

  62. M.M. Guzzo, S.T. Petcov, Phys. Lett. B 271(1–2), 172–178 (1991)

    Article  ADS  Google Scholar 

  63. E. Roulet, Phys. Rev. D 44(4), R935 (1991)

    Article  ADS  Google Scholar 

  64. O.G. Miranda, M.A. Tortola, J.W.F. Valle, JHEP 0610, 008 (2006). ([hep-ph/0406280])

  65. P. Coloma, T. Schwetz, Phys. Rev. D 94, 055005 (2016)

    Article  ADS  Google Scholar 

  66. P. Coloma, T. Schwetz, Phys. Rev. D 95, 079903 (2017)

    Article  ADS  Google Scholar 

  67. T. Ohlsson, H. Snellman, Phys. Lett. B 474, 153–162 (2000)

    Article  ADS  Google Scholar 

  68. I. Esteban, M.C. Gonzalez-Garcia, A. Hernandez-Cabezudo, M. Maltoni, T. Schwetz, JHEP 1901, 106 (2019)

    Article  ADS  Google Scholar 

  69. A.M. Dziewonski, D.L. Anderson, Phys. Earth and Planet. Interiors 25, 297–356 (1981)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are thankful to the organizing committee of the IITB–ICTP Workshop on Neutrino Physics–2018 where initial ideas related to this work were generated. We would also like to thank S. Uma Sankar for providing useful insights into the non-standard interactions in neutrinos

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khushboo Dixit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dixit, K., Alok, A.K. New physics effects on quantum coherence in neutrino oscillations. Eur. Phys. J. Plus 136, 334 (2021). https://doi.org/10.1140/epjp/s13360-021-01311-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01311-4

Navigation