Skip to main content

Advertisement

Log in

Thermal aspects of interacting quantum gases in Lorentz-violating scenarios

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this work, we study the interaction of quantum gases in Lorentz-violating scenarios considering both boson and fermion sectors. In the latter case, we investigate the consequences of a system governed by scalar, vector, pseudovector and tensor operators. Besides, we examine the implications of \(\left( \hat{k}_{a}\right) ^{\kappa }\) and \(\left( \hat{k}_{c}\right) ^{\kappa \xi }\) operators for the boson case and the upper bounds are estimated. To do so, we regard the grand canonical ensemble seeking the so-called partition function, which suffices to provide analytically the calculations of interest, i.e., the mean particle number, the entropy, the mean total energy and the pressure. Furthermore, in low-temperature regime, such quantities converge until reaching a similar behavior being in contrast with what is shown in high-temperature regime, which brings out the differentiation of their effects. In addition, the particle number, the entropy and the energy exhibit an extensive characteristic even in the presence of Lorentz violation. Also, for the pseudovector and the tensor operators, we notice a remarkable feature due to the breaking process of spin degeneracy: the system turns out to have greater energy and particle number for the spin-down particles in comparison with the spin-up ones. Finally, we propose two feasible applications to corroborate our results: phosphorene and spin precession.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Here, we can still use the background coming from the standard Statistical Mechanics.

  2. Here, we are mentioning that the mean field approximation is just one way to get such potential. However, our results are quite general and they are not restricted to the assumption of the validity of the molecular field approximation. Moreover, it is worth pointing out that such an approach is widely used to obtain many interactions in condensed-matter physics. Nevertheless, it is not the unique way to do so. Also, from the point of view of numerical results, the mean field approximation turns out to be convenient since we can find a lot of interesting results in the literature using the same procedure, as already mentioned in the manuscript.

  3. It is important to mention that the only requirement is that \(\delta _{r}\) can be written in terms of momenta.

  4. Here we point out that all the results below were calculated numerically. So, to avoid a plethora of numerical terms, we decide to omit them and show just the important results.

References

  1. S. Judes, M. Visser, Phys. Rev. D 68, 045001 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  2. H.P. Robertson, Rev. Mod. Phys. 21, 378 (1949)

    Article  ADS  Google Scholar 

  3. R.C. Myers, M. Pospelov, Phys. Rev. Lett. 90, 211601 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  4. O. Bertolami, J.G. Rosa, Phys. Rev. D 71, 097901 (2005)

    Article  ADS  Google Scholar 

  5. C.M. Reyes, L.F. Urrutia, J.D. Vergara, Phys. Rev. D 78, 125011 (2008)

    Article  ADS  Google Scholar 

  6. D. Mattingly, arXiv preprint arXiv:0802.1561(2008)

  7. G. Rubtsov, P. Satunin, S. Sibiryakov, CPT and Lorentz Symmetry, 192–195 (2014)

  8. S. Liberati, Class. Quantum Grav. 30, 133001 (2013)

    Article  ADS  Google Scholar 

  9. J.D. Tasson, Rep. Prog. Phys. 77, 062901 (2014)

    Article  ADS  Google Scholar 

  10. A. Hees, Q.G. Bailey, A. Bourgoin, P.-L. Bars, C. Guerlin, L. Poncin-Lafitte et al., Universe 2, 30 (2016)

    Article  ADS  Google Scholar 

  11. C. Rovelli, Quantum Gravity (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  12. V.A. Kostelecký, S. Samuel, Phys. Rev. D 39, 683 (1989a)

    Article  ADS  Google Scholar 

  13. V.A. Kostelecký, S. Samuel, Phys. Rev. Lett. 63, 224 (1989b)

    Article  ADS  Google Scholar 

  14. V.A. Kostelecký, S. Samuel, Phys. Rev. D 40, 1886 (1989c)

    Article  ADS  Google Scholar 

  15. V.A. Kostelecký, R. Potting, Nuclear Phys. B 359, 545 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  16. V. A. Kostelecký, R. Potting, Phys. Rev. D 51, 3923

  17. R. Gambini, J. Pullin, Phys. Rev. D 59, 124021 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  18. M. Bojowald, H.A. Morales-Técotl, H. Sahlmann, Phys. Rev. D 71, 084012 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  19. G. Amelino-Camelia, S. Majid, Int. J. Mod. Phys. A 15, 4301 (2000)

    ADS  Google Scholar 

  20. S.M. Carroll, J.A. Harvey, V.A. Kostelecký, C.D. Lane, T. Okamoto, Phys. Rev. Lett. 87, 141601 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  21. F.R. Klinkhamer, C. Rupp, Phys. Rev. D 70, 045020 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  22. S. Bernadotte, F.R. Klinkhamer, Phys. Rev. D 75, 024028 (2007)

    Article  ADS  Google Scholar 

  23. F. Klinkhamer, Nuclear Phys. B 535, 233 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  24. F. Klinkhamer, Nuclear Phys. B 578, 277 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  25. F. Klinkhamer, J. Schimmel, Nuclear Phys. B 639, 241 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  26. K. Ghosh, F. Klinkhamer, Nuclear Phys. B 926, 335 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  27. P. Hořava, Phys. Rev. D 79, 084008 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  28. G. Cognola, R. Myrzakulov, L. Sebastiani, S. Vagnozzi, S. Zerbini, Class. Quantum Grav. 33, 225014 (2016)

    Article  ADS  Google Scholar 

  29. A. Casalino, M. Rinaldi, L. Sebastiani, S. Vagnozzi, Class. Quantum Grav. 36, 017001 (2018)

    Article  ADS  Google Scholar 

  30. D. Colladay, V.A. Kosteleckỳ, Phys. Rev. D 58, 116002 (1998a)

    Article  ADS  Google Scholar 

  31. D. Colladay, V.A. Kosteleckỳ, Phys. Rev. D 58, 116002 (1998b)

    Article  ADS  Google Scholar 

  32. V.A. Kosteleckỳ, S. Samuel, Phys. Rev. Lett. 63, 224 (1989a)

    Article  ADS  Google Scholar 

  33. V.A. Kosteleckỳ, S. Samuel, Phys. Rev. D 39, 683 (1989b)

    Article  ADS  Google Scholar 

  34. V.A. Kosteleckỳ, R. Potting, Phys. Lett. B 381, 89 (1996)

    Article  ADS  Google Scholar 

  35. V.A. Kosteleckỳ, Phys. Rev. D 69, 105009 (2004)

    Article  ADS  Google Scholar 

  36. M. Mewes, Phys. Rev. D 99, 104062 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  37. R. Maluf, A. Araújo Filho, W. Cruz, C. Almeida, EPL (Europhys. Lett.) 124, 61001 (2019)

    Article  Google Scholar 

  38. V.A. Kosteleckỳ, R. Lehnert, Phys. Rev. D 63, 065008 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  39. G.M. Shore, Nuclear Phys. B 717, 86 (2005)

    Article  ADS  Google Scholar 

  40. D. Colladay, V.A. Kosteleckỳ, Phys. Lett. B 511, 209 (2001)

    Article  ADS  Google Scholar 

  41. O. Kharlanov, V.C. Zhukovsky, J. Math. Phys. 48, 092302 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  42. R. Bluhm, V.A. Kosteleckỳ, C.D. Lane, Phys. Rev. Lett. 84, 1098 (2000)

    Article  ADS  Google Scholar 

  43. S. Kruglov, Phys. Lett. B 718, 228 (2012)

    Article  ADS  Google Scholar 

  44. J.A.A.S. Reis, M. Schreck, Phys. Rev. D 95, 075016 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  45. M. Schreck, Phys. Rev. D 96, 095026 (2017)

    Article  ADS  Google Scholar 

  46. C. Adam, F.R. Klinkhamer, Nuclear Phys. B 607, 247 (2001)

    Article  ADS  Google Scholar 

  47. A.A. Andrianov, R. Soldati, Phys. Lett. B 435, 449 (1998)

    Article  ADS  Google Scholar 

  48. A.A. Andrianov, R. Soldati, L. Sorbo, Phys. Rev. D 59, 025002 (1998)

    Article  ADS  Google Scholar 

  49. H. Belich, L. Bernald, P. Gaete, J. Helayël-Neto, Eur. Phys. J. C 73, 2632 (2013)

    Article  ADS  Google Scholar 

  50. A.B. Scarpelli, H. Belich, J. Boldo, J. Helayel-Neto, Phys. Rev. D 67, 085021 (2003)

    Article  ADS  Google Scholar 

  51. J. Alfaro, A. Andrianov, M. Cambiaso, P. Giacconi, R. Soldati, Int. J. Mod. Phys. A 25, 3271 (2010)

    Article  ADS  Google Scholar 

  52. R. Casana, M.M. Ferreira, L. Lisboa-Santos, F.E.P. dos Santos, M. Schreck, Phys. Rev. D 97, 115043 (2018a)

    Article  ADS  Google Scholar 

  53. M.M. Ferreira, L. Lisboa-Santos, R.V. Maluf, M. Schreck, Phys. Rev. D 100, 055036 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  54. J.A.A.S. Reis, M.M. Ferreira, M. Schreck, Phys. Rev. D 100, 095026 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  55. V.A. Kosteleckỳ, M. Mewes, Phys. Rev. Lett. 87, 251304 (2001)

    Article  ADS  Google Scholar 

  56. F. Klinkhamer, M. Risse, Phys. Rev. D 77, 016002 (2008)

    Article  ADS  Google Scholar 

  57. B. Altschul, Phys. Rev. Lett. 98, 041603 (2007)

    Article  ADS  Google Scholar 

  58. M. Schreck, Phys. Rev. D 86, 065038 (2012)

    Article  ADS  Google Scholar 

  59. V.A. Kosteleckỳ, M. Mewes, Phys. Rev. D 80, 015020 (2009a)

    Article  ADS  Google Scholar 

  60. V.A. Kosteleckỳ, M. Mewes, Phys. Rev. D 85, 096005 (2012)

    Article  ADS  Google Scholar 

  61. V.A. Kosteleckỳ, M. Mewes, Phys. Rev. D 88, 096006 (2013a)

    Article  ADS  Google Scholar 

  62. Y. Ding, V.A. Kostelecký, Phys. Rev. D 94, 056008 (2016)

    Article  ADS  Google Scholar 

  63. V.A. Kostelecký, Z. Li, Phys. Rev. D 99, 056016 (2019)

    Article  ADS  Google Scholar 

  64. R. Casana, M. Ferreira Jr., E. Passos, F. dos Santos, E. Silva, Phys. Rev. D 87, 047701 (2013a)

    Article  ADS  Google Scholar 

  65. R. Casana, M. Ferreira Jr., R. Maluf, F. dos Santos, Phys. Lett. B 726, 815 (2013b)

    Article  ADS  Google Scholar 

  66. H. Belich, L. Colatto, T. Costa-Soares, J. Helayël-Neto, M. Orlando, Eur. Phys. J. C 62, 425 (2009)

    Article  ADS  Google Scholar 

  67. M. Schreck, Phys. Rev. D 90, 085025 (2014)

    Article  ADS  Google Scholar 

  68. R. Cuzinatto, C. De Melo, L. Medeiros, P. Pompeia, Int. J. Mod. Phys. A 26, 3641 (2011)

    Article  ADS  Google Scholar 

  69. R. Casana, M.M. Ferreira Jr., L. Lisboa-Santos, F.E. dos Santos, M. Schreck, Phys. Rev. D 97, 115043 (2018b)

    Article  ADS  Google Scholar 

  70. A.A. Filho, R. Maluf, arXiv preprintarXiv:2003.02380(2020)

  71. M. Anacleto, F. Brito, E. Maciel, A. Mohammadi, E. Passos, W. Santos, J. Santos, Phys. Lett. B 785, 191 (2018)

    Article  ADS  Google Scholar 

  72. L. Borges, F. Barone, C. de Melo, F. Barone, Nuclear Phys. B 944, 114634 (2019)

    Article  MathSciNet  Google Scholar 

  73. D. Colladay, P. McDonald, Phys. Rev. D 70, 125007 (2004)

    Article  ADS  Google Scholar 

  74. D. Colladay, P. McDonald, Phys. Rev. D 73, 105006 (2006)

    Article  ADS  Google Scholar 

  75. E. Castellanos, C. Lämmerzahl, Mod. Phys. Lett. A 27, 1250181 (2012)

    Article  ADS  Google Scholar 

  76. E. Castellanos, A. Camacho, Gen. Relat. Gravit. 41, 2677 (2009)

    Article  ADS  Google Scholar 

  77. M. Gomes, T. Mariz, J. Nascimento, A.Y. Petrov, A. Santos, A. da Silva, Phys. Rev. D 81, 045013 (2010)

    Article  ADS  Google Scholar 

  78. R. Casana, M.M. Ferreira Jr., J.S. Rodrigues, M.R. Silva, Phys. Rev. D 80, 085026 (2009)

    Article  ADS  Google Scholar 

  79. G. Kaniadakis, Phys. Rev. E 72, 036108 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  80. R. Casana, K.A.T. da Silva, Mod. Phys. Lett. A 30, 1550037 (2015)

    Article  ADS  Google Scholar 

  81. D. Colladay, P. McDonald, CPT and Lorentz Symmetry (World Scientific, Singapore, 2005), pp. 264–269

    Book  Google Scholar 

  82. V.A. Kosteleckỳ, M. Mewes, Phys. Rev. Lett. 99, 011601 (2007)

    Article  ADS  Google Scholar 

  83. V.A. Kosteleckỳ, M. Mewes, Phys. Rev. D 80, 015020 (2009b)

    Article  ADS  Google Scholar 

  84. M. Cambiaso, R. Lehnert, R. Potting, Phys. Rev. D 85, 085023 (2012)

    Article  ADS  Google Scholar 

  85. M. Mewes, Phys. Rev. D 85, 116012 (2012)

    Article  ADS  Google Scholar 

  86. B.R. Edwards, V.A. Kosteleckỳ, Phys. Lett. B 786, 319 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  87. E. Passos, A.Y. Petrov, Phys. Lett. B 662, 441 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  88. M. Gomes, J. Nascimento, Phys. Rev. D 81, 045018 (2010)

    Article  ADS  Google Scholar 

  89. D.T. Khoa, G. Satchler, W. Von Oertzen, Phys. Rev. C 56, 954 (1997)

    Article  ADS  Google Scholar 

  90. R.M. Barnett, C. Carone, D. Groom, T. Trippe, C. Wohl, B. Armstrong, P. Gee, G. Wagman, F. James, M. Mangano et al., Phys. Rev. D 54, 1 (1996)

    Article  ADS  Google Scholar 

  91. S. Eidelman, K. Hayes, K..e. Olive, M.. Aguilar-Benitez, C.. Amsler, D. Asner, K. Babu, R. Barnett, J. Beringer, P. Burchat et al., Phys. Lett. B 592, 1 (2004)

    Article  ADS  Google Scholar 

  92. G. Lalazissis, T. Nikšić, D. Vretenar, P. Ring, Phys. Rev. C 71, 024312 (2005)

    Article  ADS  Google Scholar 

  93. R. Humphries, P. James, G. Luckhurst, J. Chem. Soc. Farad. Trans. 2 Mol. Chem. Phys. 68, 1031 (1972)

    Google Scholar 

  94. M.W. Klein, Phys. Rev. 188, 933 (1969)

    Article  ADS  Google Scholar 

  95. P.J. Wojtowicz, M. Rayl, Phys. Rev. Lett. 20, 1489 (1968)

    Article  ADS  Google Scholar 

  96. D. Ter Haar, M. Lines, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 254, 521 (1962)

    ADS  Google Scholar 

  97. A.A. Araújo-Filho, F.L. Silva, A. Righi, M.B. da Silva, B.P. Silva, E.W. Caetano, V.N. Freire, J. Solid State Chem. 250, 68 (2017)

    Article  ADS  Google Scholar 

  98. F.LRe. Silva, A.A.A. Filho, M.B. da Silva, K. Balzuweit, J..-L.. Bantignies, E.W.S. Caetano, R.L. Moreira, V.N. Freire, A. Righi, J. Raman Spectrosc. 49, 538 (2018)

    Article  ADS  Google Scholar 

  99. W. Greiner, L. Neise, H. Stöcker, Thermodynamics and Statistical Mechanics (Springer, Berlin, 2012)

    MATH  Google Scholar 

  100. S.R. Salinas, Introdução a física estatística vol. 09 (Edusp, 1997)

  101. R. Pathria, P.D. Beale, Butter worth 32

  102. A.A.A. Filho, arXiv preprint arXiv:2004.07799(2020)

  103. R. Oliveira, A. Araújo Filho, Eur. Phys. J. Plus 135, 99 (2020)

    Article  Google Scholar 

  104. R.R. Oliveira, A.A. Araújo Filho, F.C. Lima, R.V. Maluf, C.A. Almeida, Eur. Phys. J. Plus 134, 495 (2019)

    Article  Google Scholar 

  105. M. Pacheco, R. Maluf, C. Almeida, R. Landim, EPL (Europhys. Lett.) 108, 10005 (2014)

    Article  ADS  Google Scholar 

  106. R. Casana, M.M. Ferreira Jr., J.S. Rodrigues, Phys. Rev. D 78, 125013 (2008)

    Article  ADS  Google Scholar 

  107. A.G. Cohen, S.L. Glashow, Phys. Rev. Lett. 97, 021601 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  108. E. Kolomeitsev, D. Voskresensky, Nuclear Phys. A 973, 89 (2018)

    Article  ADS  Google Scholar 

  109. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    Article  ADS  Google Scholar 

  110. M.E. Casida, C. Jamorski, K.C. Casida, D.R. Salahub, J. Chem. Phys. 108, 4439 (1998)

    Article  ADS  Google Scholar 

  111. M.D. Segall, P.J.D. Lindan, MJa. Probert, C.J. Pickard, P.J. Hasnip, S. Clark, M. Payne, J. Phys. Condens. Matter 14, 2717 (2002)

    Article  ADS  Google Scholar 

  112. D.C. Langreth, M.J. Mehl, Phys. Rev. B 28, 1809 (1983)

    Article  ADS  Google Scholar 

  113. S.M. Cunha, D.R. da Costa, L.C. Felix, A. Chaves, J.M. Pereira Jr., Phys. Rev. B 102, 045427 (2020)

    Article  ADS  Google Scholar 

  114. V.A. Kosteleckỳ, M. Mewes, Phys. Lett. B 757, 510 (2016)

    Article  ADS  Google Scholar 

  115. V.A. Kosteleckỳ, N. Russell, Rev. Mod. Phys. 83, 11 (2011)

    Article  ADS  Google Scholar 

  116. V.A. Kosteleckỳ, M. Mewes, Phys. Rev. Lett. 110, 201601 (2013b)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) - 142412/2018-0, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) - Finance Code 001, and CAPES-PRINT (PRINT - PROGRAMA INSTITUCIONAL DE INTERNACIONALIZAÇÃO) - 88887.508184/2020-00 the for financial support. In addition, the authors thank L.L. Mesquita, A.Y. Petrov and J.A. Helayël-Neto for the careful reading of this manuscript; moreover, the authors would like to express their gratitude to the anonymous referee for the suggestions and João Milton for having addressed some fruitful applications for our work. Particularly, A. A. Araújo Filho acknowledges the Facultad de Física - Universitat de València and Gonzalo J. Olmo for the kind hospitality when part of this work was made.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Araújo Filho.

Appendices

Appendix A: Are they still extensive state quantities?

Here, to corroborate our results, we proceed further for the sake of verifying the validity of the derived relations in the thermodynamic limit. Indeed, we need to take \(N\rightarrow \infty \), \( V\rightarrow \infty \) and \(N/V=\) const. Being proportional to the volume, the mean particle number, the entropy and the mean energy turn out to be extensive quantities in the ordinary case. Nevertheless, knowing whether the Lorentz violation removes such extensive property or not is an intriguing question to be checked. With this purpose, we proceed making the substitution in the following way

$$\begin{aligned} \sum _{r}\rightarrow \frac{gV}{\left( 2\pi \right) ^{3}}\int d^{3}\varvec{ p}, \end{aligned}$$
(A1)

where g is the degeneracy factor. Now, let us make some comments. Taking the thermodynamic limit is only reasonably supported when \(u^{\prime }\left( \bar{n}\right) \) and \(u\left( \bar{n}\right) \) do not depend upon the volume. Additionally, this also entails that the particle number density \(\bar{n}=\bar{N}/V\) must not depend upon it. Now, let us verify this assumption starting with

$$\begin{aligned} \left. \frac{\partial \bar{n}}{\partial V}\right| _{\mu ,T}=\left. \frac{ \partial }{\partial V}\left( \frac{\bar{N}}{V}\right) \right| _{\mu ,T}= \frac{1}{V}\left( \left. \frac{\partial \bar{N}}{\partial V}\right| _{\mu ,T}-\frac{\bar{N}}{V}\right) , \end{aligned}$$
(A2)

which yields

$$\begin{aligned} \left. \frac{\partial \bar{N}}{\partial V}\right| _{\mu ,T}= & {} \frac{gV}{ \left( 2\pi \right) ^{3}}\int d^{3}\varvec{p}\frac{1}{\exp \left\{ \beta \left[ \epsilon _{r}\left( \varvec{p}\right) +\delta _{r}\left( \varvec{p}\right) +u^{\prime }\left( \bar{n}\right) -\mu \right] \right\} +\chi } \nonumber \\&+\frac{gV}{\left( 2\pi \right) ^{3}}\int d^{3}\varvec{p}\left\{ -\left[ \frac{1}{\exp \left\{ \beta \left[ \epsilon _{r}\left( \varvec{p}\right) +\delta _{r}\left( \varvec{p}\right) +u^{\prime }\left( \bar{n}\right) -\mu \right] \right\} +\chi }\right] ^{2}\right\} \nonumber \\&\times \exp \left\{ \beta \left[ \epsilon _{r}\left( \varvec{p}\right) +\delta _{r}\left( \varvec{p}\right) +u^{\prime }\left( \bar{n}\right) -\mu \right] \right\} \beta \left. \frac{\partial u^{\prime }\left( \bar{n} \right) }{\partial V}\right| _{\mu ,T}. \end{aligned}$$
(A3)

In this sense, we identify the first term as \(\bar{N}/V\); the second term we rewrite using

$$\begin{aligned} \left. \frac{\partial u^{\prime }\left( \bar{n}\right) }{\partial V} \right| _{\mu ,T}=u^{\prime \prime }\left( \bar{n}\right) \left. \frac{ \partial \bar{n}}{\partial V}\right| _{\mu ,T}=\frac{u^{\prime \prime }\left( \bar{n}\right) }{V}\left( \left. \frac{\partial \bar{N}}{\partial V} \right| _{\mu ,T}-\frac{\bar{N}}{V}\right) , \end{aligned}$$
(A4)

as

$$\begin{aligned} -\sum _{r}\bar{n}_{r}\frac{\beta }{V}u^{\prime \prime }\left( \bar{n}\right) \left( \left. \frac{\partial \bar{N}}{\partial V}\right| _{\mu ,T}-\frac{ \bar{N}}{V}\right) \exp \left\{ \beta \left[ \epsilon _{r}\left( \varvec{ p}\right) +\delta _{r}\left( \varvec{p}\right) +u^{\prime }\left( \bar{n} \right) -\mu \right] \right\} , \end{aligned}$$

and to finish we obtain

$$\begin{aligned} \left. \frac{\partial \bar{n}}{\partial V}\right| _{\mu ,T}= & {} \frac{1}{V }\left( \left. \frac{\partial \bar{N}}{\partial V}\right| _{\mu ,T}- \frac{\bar{N}}{V}\right) \nonumber \\= & {} \frac{1}{V}\left( -\sum _{r}\bar{n}_{r}\frac{\beta }{V}u^{\prime \prime }\left( \bar{n}\right) \exp \left\{ \beta \left[ \epsilon _{r}\left( \varvec{p}\right) +\delta _{r}\left( \varvec{p}\right) +u^{\prime }\left( \bar{n}\right) -\mu \right] \right\} \right) \nonumber \\&\times \left( \left. \frac{\partial \bar{N}}{\partial V}\right| _{\mu ,T}-\frac{\bar{N}}{V}\right) . \end{aligned}$$
(A5)

Additionally, this relation is verified if

$$\begin{aligned} 1=-\sum _{r}\bar{n}_{r}\frac{\beta }{V}\exp \left\{ \beta \left[ \epsilon _{r}\left( \varvec{p}\right) +\delta _{r}\left( \varvec{p}\right) +u^{\prime }\left( \bar{n}\right) -\mu \right] \right\} u^{\prime \prime }\left( \bar{n}\right) . \end{aligned}$$
(A6)

Nevertheless, in a general case, this is not true for the reason that \(u\left( n\right) \) is an absolutely arbitrary interaction potential density. As a matter of fact, it must hold that

$$\begin{aligned} \left. \frac{\partial \bar{N}}{\partial V}\right| _{\mu ,T}=\frac{\bar{N} }{V}, \end{aligned}$$
(A7)

i.e., \(\left. \frac{\partial \bar{n}}{\partial V}\right| _{\mu ,T}\) must vanish. Finally, we should notice that, since \(\delta _{r}\left( \varvec{p} \right) \) is a function only of \(\varvec{p}\), it does not mess up the extensive property. Therefore, for such thermal properties, even in the presence of Lorentz violation, the extensive characteristic of the system is maintained as well.

Appendix B: Numerical analyses

See Tables 3, 4, 5, 6, 7 and 8.

Table 3 The scalar operator concerning the fermion sector
Table 4 The vector operator concerning the fermion sector
Table 5 The pseudovector operator for fermions
Table 6 The tensor operator for fermions
Table 7 The vector operator in the boson sector
Table 8 The tensor operator for the boson sector

Here, we provide such Appendix to exhibit a concise explanation for the numerical calculations encountered throughout this manuscript. We show the thermal quantities, namely the energy, the mean particle number and the entropy per volume, for different values of \(\beta \). Besides, \(\mathcal {E}\), \(\mathfrak {N}\) and \(\mathfrak {S}\) are quantities representing the energy, the mean particle number as well as the entropy per volume, respectively. The outputs for fermions and bosons modes are displayed as follows:

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filho, A.A.A., Reis, J.A.A.S. Thermal aspects of interacting quantum gases in Lorentz-violating scenarios. Eur. Phys. J. Plus 136, 310 (2021). https://doi.org/10.1140/epjp/s13360-021-01289-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01289-z

Navigation