Skip to main content
Log in

New estimate of the chromomagnetic dipole moment of quarks in the standard model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A new estimate of the one loop contributions of the standard model to the chromomagnetic dipole moment (CMDM) \(\hat{\mu }_q(q^2)\) of quarks is presented with the aim to address a few disagreements arising in previous calculations. The most general case with arbitrary \(q^2\) is considered and analytical results are obtained in terms of Feynman parameter integrals and Passarino-Veltman scalar functions, which are then expressed in terms of closed form functions when possible. It is found that while the QCD contribution to the static CMDM (\(q^2=0\)) is infrared divergent, which agrees with previous evaluations and stems from the fact that this quantity has no sense in perturbative QCD, the off-shell CMDM (\(q^2\ne 0\)) is finite and gauge independent, which is verified by performing the calculation for arbitrary gauge parameter \(\xi \) via both a renormalizable linear \(R_\xi \) gauge and the background field method. It is thus argued that the off-shell \(\hat{\mu }_q(q^2)\) can represent a valid observable quantity. For the numerical analysis we consider the region 30 GeV\(<\Vert q\Vert<\) 1000 GeV and analyze the behavior of \(\hat{\mu }_q(q^2)\) for all the standard model quarks. It is found that the CMDM of light quarks is considerably smaller than that of the top quark as it is directly proportional to the quark mass. In the considered energy interval, both the real and imaginary parts of \(\hat{\mu }_t(q^2)\) are of the order of \(10^{-2}-10^{-3}\), with the largest contribution arising from the QCD induced diagrams, though around the threshold \(q^2=4m_t^2\) there are also important contributions from diagrams with Z gauge boson and Higgs boson exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon request by contacting with the corresponding author.]

Notes

  1. From now on, all the corresponding loop functions appearing in the contributions to \(a_q\left( q^2\right) \), denoted by calligraphy letters, will be presented in terms of Feynman parameter integrals, Passarino-Veltman scalar functions and closed form results in Appendices A.1A.2, and A.3, respectively, including the results for \(q^2=0\).

References

  1. S. Laporta, E. Remiddi, Phys. Lett. B 379, 283 (1996). https://doi.org/10.1016/0370-2693(96)00439-X

    Article  ADS  Google Scholar 

  2. S.R. Moore, K. Whisnant, B.L. Young, Phys. Rev. D 31, 105 (1985). https://doi.org/10.1103/PhysRevD.31.105

    Article  ADS  Google Scholar 

  3. F. Jegerlehner, Acta Phys. Polon. B 49, 1157 (2018). https://doi.org/10.5506/APhysPolB.49.1157

    Article  ADS  Google Scholar 

  4. A. Czarnecki, M. Skrzypek, Phys. Lett. B 449, 354 (1999). https://doi.org/10.1016/S0370-2693(99)00076-3

    Article  ADS  Google Scholar 

  5. M. Lindner, M. Platscher, F.S. Queiroz, Phys. Rep. 731, 1 (2018). https://doi.org/10.1016/j.physrep.2017.12.001

    Article  ADS  MathSciNet  Google Scholar 

  6. M. Pospelov, A. Ritz, Ann. Phys. 318, 119 (2005). https://doi.org/10.1016/j.aop.2005.04.002

    Article  ADS  Google Scholar 

  7. A. Czarnecki, W.J. Marciano, Adv. Ser. Direct. High Energy Phys. 20, 11 (2009). https://doi.org/10.1142/9789814271844_0002

    Article  Google Scholar 

  8. A. Moyotl, A. Rosado, G. Tavares-Velasco, Phys. Rev. D 84, 073010 (2011). https://doi.org/10.1103/PhysRevD.84.073010

    Article  ADS  Google Scholar 

  9. H. Novales-Sánchez, M. Salinas, J.J. Toscano, O. Vázquez-Hernández, Phys. Rev. D 95(5), 055016 (2017). https://doi.org/10.1103/PhysRevD.95.055016

    Article  ADS  Google Scholar 

  10. C.F. Chang, P.Q. Hung, C.S. Nugroho, V.Q. Tran, T.C. Yuan, Nucl. Phys. B 928, 21 (2018). https://doi.org/10.1016/j.nuclphysb.2018.01.007

    Article  ADS  Google Scholar 

  11. V. Keus, N. Koivunen, K. Tuominen, JHEP 09, 059 (2018). https://doi.org/10.1007/JHEP09(2018)059

    Article  ADS  Google Scholar 

  12. H. Gisbert, J. Ruiz Vidal, Phys. Rev. D 101(11), 115010 (2020). https://doi.org/10.1103/PhysRevD.101.115010

    Article  ADS  Google Scholar 

  13. A.I. Hernández-Juárez, A. Moyotl, G. Tavares-Velasco, Phys. Rev. D 98(3), 035040 (2018). https://doi.org/10.1103/PhysRevD.98.035040

    Article  ADS  Google Scholar 

  14. R. Martinez, M.A. Perez, N. Poveda, Eur. Phys. J. C 53, 221 (2008). https://doi.org/10.1140/epjc/s10052-007-0457-6

    Article  ADS  Google Scholar 

  15. R. Gaitan, E.A. Garces, J.H.M. de Oca, R. Martinez, Phys. Rev. D 92(9), 094025 (2015). https://doi.org/10.1103/PhysRevD.92.094025

    Article  ADS  Google Scholar 

  16. J.I. Aranda, D. Espinosa-Gómez, J. Montaño, B. Quezadas-Vivian, F. Ramírez-Zavaleta, E.S. Tututi, Phys. Rev. D 98(11), 116003 (2018). https://doi.org/10.1103/PhysRevD.98.116003

    Article  ADS  Google Scholar 

  17. Q.H. Cao, C.R. Chen, F. Larios, C.P. Yuan, Phys. Rev. D 79, 015004 (2009). https://doi.org/10.1103/PhysRevD.79.015004

    Article  ADS  Google Scholar 

  18. L. Ding, C.X. Yue, Commun. Theor. Phys. 50, 441 (2008). https://doi.org/10.1088/0253-6102/50/2/32

    Article  ADS  Google Scholar 

  19. A. Aboubrahim, T. Ibrahim, P. Nath, A. Zorik, Phys. Rev. D 92(3), 035013 (2015). https://doi.org/10.1103/PhysRevD.92.035013

    Article  ADS  Google Scholar 

  20. R. Martinez, M.A. Perez, O.A. Sampayo, Int. J. Mod. Phys. A 25, 1061 (2010). https://doi.org/10.1142/S0217751X10048159

    Article  ADS  Google Scholar 

  21. T. Ibrahim, P. Nath, Phys. Rev. D 84, 015003 (2011). https://doi.org/10.1103/PhysRevD.84.015003

    Article  ADS  Google Scholar 

  22. V. Khachatryan et al., Phys. Rev. D 93(5), 052007 (2016). https://doi.org/10.1103/PhysRevD.93.052007

    Article  ADS  Google Scholar 

  23. A.M. Sirunyan et al., Phys. Rev. D 100(7), 072002 (2019). https://doi.org/10.1103/PhysRevD.100.072002

    Article  ADS  Google Scholar 

  24. A. Czarnecki, B. Krause, Phys. Rev. Lett. 78, 4339 (1997). https://doi.org/10.1103/PhysRevLett.78.4339

    Article  ADS  Google Scholar 

  25. I.B. Khriplovich, Phys. Lett. B 173, 193 (1986). https://doi.org/10.1016/0370-2693(86)90245-5

    Article  ADS  Google Scholar 

  26. I.B. Khriplovich, Yad. Fiz. 44, 1019 (1986)

    Google Scholar 

  27. E.P. Shabalin, Sov. J. Nucl. Phys. 28, 75 (1978)

    Google Scholar 

  28. E.P. Shabalin, Yad. Fiz. 28, 151 (1978)

    Google Scholar 

  29. I.D. Choudhury, A. Lahiri, Mod. Phys. Lett. A 30(23), 1550113 (2015). https://doi.org/10.1142/S0217732315501138

    Article  ADS  Google Scholar 

  30. A.M. Sirunyan et al., Eur. Phys. J. C 79(11), 886 (2019). https://doi.org/10.1140/epjc/s10052-019-7387-y

    Article  ADS  Google Scholar 

  31. A.I. Davydychev, P. Osland, L. Saks, Phys. Rev. D 63, 014022 (2001). https://doi.org/10.1103/PhysRevD.63.014022

    Article  ADS  Google Scholar 

  32. J.M. Cornwall, Phys. Rev. D 26, 1453 (1982). https://doi.org/10.1103/PhysRevD.26.1453

    Article  ADS  Google Scholar 

  33. J.M. Cornwall, J. Papavassiliou, Phys. Rev. D 40, 3474 (1989). https://doi.org/10.1103/PhysRevD.40.3474

    Article  ADS  Google Scholar 

  34. D. Binosi, J. Papavassiliou, Phys. Rep. 479, 1 (2009). https://doi.org/10.1016/j.physrep.2009.05.001

    Article  ADS  MathSciNet  Google Scholar 

  35. A. Denner, G. Weiglein, S. Dittmaier, Nucl. Phys. B 440, 95 (1995). https://doi.org/10.1016/0550-3213(95)00037-S

    Article  ADS  Google Scholar 

  36. A. Pilaftsis, Nucl. Phys. B 487, 467 (1997). https://doi.org/10.1016/S0550-3213(96)00686-4

    Article  ADS  Google Scholar 

  37. V. Shtabovenko, R. Mertig, F. Orellana, Comput. Phys. Commun. 207, 432 (2016). https://doi.org/10.1016/j.cpc.2016.06.008

    Article  ADS  Google Scholar 

  38. H.H. Patel, Comput. Phys. Commun. 197, 276 (2015). https://doi.org/10.1016/j.cpc.2015.08.017

    Article  ADS  MathSciNet  Google Scholar 

  39. W. Hollik, J.I. Illana, S. Rigolin, C. Schappacher, D. Stockinger, Nucl. Phys. B 551, 3 (1999). https://doi.org/10.1016/S0550-3213(99)00396-X ([Erratum: Nucl. Phys. B 557, 407-409 (1999)])

    Article  ADS  Google Scholar 

  40. Z. Hioki, K. Ohkuma, Eur. Phys. J. C 65, 127 (2010). https://doi.org/10.1140/epjc/s10052-009-1204-y

    Article  ADS  Google Scholar 

  41. J.F. Kamenik, M. Papucci, A. Weiler, Phys. Rev. D 85, 071501 (2012). https://doi.org/10.1103/PhysRevD.85.071501 ([Erratum: Phys. Rev. D 88, 039903 (2013)])

    Article  ADS  Google Scholar 

  42. W. Bernreuther, Z.G. Si, Phys. Lett. B 725, 115 (2013). https://doi.org/10.1016/j.physletb.2013.06.051 ([Erratum: Phys. Lett. B 744, 413-413 (2015)])

    Article  ADS  Google Scholar 

  43. Km. Cheung, Phys. Rev. D 53, 3604 (1996). https://doi.org/10.1103/PhysRevD.53.3604

    Article  ADS  Google Scholar 

  44. P. Haberl, O. Nachtmann, A. Wilch, Phys. Rev. D 53, 4875 (1996). https://doi.org/10.1103/PhysRevD.53.4875

    Article  ADS  Google Scholar 

  45. S. Larin, J. Vermaseren, Phys. Lett. B 303, 334 (1993). https://doi.org/10.1016/0370-2693(93)91441-O

    Article  ADS  Google Scholar 

  46. G. Prosperi, M. Raciti, C. Simolo, Prog. Part. Nucl. Phys. 58, 387 (2007). https://doi.org/10.1016/j.ppnp.2006.09.001

    Article  ADS  Google Scholar 

  47. M. Tanabashi et al., Phys. Rev. D 98(3), 030001 (2018). https://doi.org/10.1103/PhysRevD.98.030001

    Article  ADS  Google Scholar 

  48. T. Hahn, M. Perez-Victoria, Comput. Phys. Commun. 118, 153 (1999). https://doi.org/10.1016/S0010-4655(98)00173-8

    Article  ADS  Google Scholar 

  49. A. Denner, S. Dittmaier, L. Hofer, Comput. Phys. Commun. 212, 220 (2017). https://doi.org/10.1016/j.cpc.2016.10.013

    Article  ADS  Google Scholar 

  50. J. Aranda, T. Cisneros-Pérez, J. Montaño, B. Quezadas-Vivian, F. Ramírez-Zavaleta, E. Tututi, e-print arxiv: 2009.05195 [hep-ph] (2020)

Download references

Acknowledgements

We acknowledge support from Consejo Nacional de Ciencia y Tecnología and Sistema Nacional de Investigadores. Partial support from Vicerrectoría de Investigación y Estudios de Posgrado de la Benémerita Universidad Autónoma de Puebla is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Hernández-Juárez.

Analytic results for the loop functions

Analytic results for the loop functions

We now present the results for the loop functions appearing in the contributions to the CMDM of quarks discussed in Sect. 2 in term of Feynman parameter integrals, Passarino-Veltman scalar functions, and closed form functions. For sake of completeness we also include the results for \(q^2=0\).

1.1 Feynman parameter integrals

We note that this calculation was done via the unitary gauge as the result are gauge independent, which was explicitly verified via the Passarino-Veltman reduction scheme. Therefore, in the EW sector we only computed by this method the Feynman diagrams (a) through (c) of Fig. 3.

We introduce the definition \(r_{a,b}=m_a/m_b\) and present the loop functions for the QCD contributions to the CMDM of quarks. Feynman diagram 2(a) yields the loop function [Eq. (9)]:

$$\begin{aligned} \mathcal {F}^{\mathrm{QCD}_1}_{q}\left( q^2\right) =m_q^2\int _0^1\int _0^{1-u}\frac{ (u-1) u}{ m_q^2 (u-1)^2+q^2 v (u+v-1)}\mathrm{d}v\mathrm{d}u, \end{aligned}$$
(31)

whereas Feynman diagram 2(b) gives [Eq. (14)]:

$$\begin{aligned} \mathcal {F}^{\mathrm{QCD}_2}_{q}\left( q^2\right) =m_q^2\int _0^1\int _0^{1-u} \frac{(u-1)u}{ m_q^2 u^2 - q^2 v (1- u - v)}\mathrm{d}v\mathrm{d}u, \end{aligned}$$
(32)

which for \(q^2=0\) reduces to

$$\begin{aligned} \mathcal {F}^{\mathrm{QCD}_2}_q(0)=\int ^1_0 \frac{ (1-u)^2 }{ u}\mathrm{d}u. \end{aligned}$$
(33)

As far as the EW contributions to the CMDM of quarks are concerned, the Feynman diagram with photon exchange of Fig. 3a gives [Eq. (17)]:

$$\begin{aligned} \mathcal {F}_{q}^A\left( q^2\right) =m_q^2\int _0^1\int _0^{1-u}\frac{ (u-1) u}{m_q^2 (u-1)^2+q^2 v (u+v-1)}\mathrm{d}v\mathrm{d}u, \end{aligned}$$
(34)

whereas the Z boson exchange diagram gives [Eq. (23)]

$$\begin{aligned} \mathcal {A}_q^Z\left( q^2\right)= & {} \int ^1_0\int ^{1-u}_0 \frac{\mathrm{d}u\mathrm{d}v}{\varDelta _Z}\Bigg ( (3 u-1) \varDelta _Z \log \left( \frac{\varDelta _Z}{\mu ^2}\right) \nonumber \\&+2 \left( m_q^2 (u-1)^3-2 m_Z^2 u\right) +2 q^2 u v (u+v-1) \Bigg ), \end{aligned}$$
(35)

and

$$\begin{aligned} \mathcal {V}_q^Z\left( q^2\right) =-\int ^1_0\int ^{1-u}_0 \frac{\mathrm{d}u\mathrm{d}v}{\varDelta _Z} m_Z^2 (u-1) u, \end{aligned}$$
(36)

where \(\varDelta _Z=m_q^2 (u-1)^2+m_Z^2 u+q^2 v(u+v-1)\) and \(\mu \) is the scale of dimensional regularization, which cancels out after integration.

For \(q^2=0\), the last two loop functions give:

$$\begin{aligned} \mathcal {A}_q^Z(0)=\int _0^1\mathrm{d}u\frac{ u \left( 2 u^2+r_{Z,q}^2 (u-4) (u-1)\right) }{ r_{Z.q}^2 (u-1)- u^2}, \end{aligned}$$
(37)

and

$$\begin{aligned} \mathcal {V}_q^Z(0)=\int _0^1\mathrm{d}u\frac{ {g_V^q}^2 r_{Z,q}^2 (u-1) u^2}{ r_{Z.q}^2 (u-1)- u^2}. \end{aligned}$$
(38)

As for the W boson exchange contribution of diagram 3(b), it is given by [Eq. (28)]:

$$\begin{aligned} \mathcal {F}_{qq'}^W\left( q^2\right)&=\int ^1_0\int ^{1-u}_0 \frac{\mathrm{d}u\mathrm{d}v}{\varDelta _W}\Bigg ( -(1-3 u) \log \left( \frac{\varDelta _W}{\mu ^2}\right) \varDelta _W\nonumber \\&\quad -2m_{q^\prime }^2(u-1)^2+u\big (2m_q^2(u-1)^2\nonumber \\&\quad -m_W^2(u+3)+2 q^2 v(u+y-1) \big )\Bigg ), \end{aligned}$$
(39)

with the following result for \(q^2=0\):

$$\begin{aligned} \mathcal {F}_{qq'}^W(0)=\int _0^1\frac{ u \left[ u \left( (u-1)+r_{q^\prime , q}^2 (u+1)\right) +2 r_{W , q}^2 (u-2) (u-1)\right] }{r_{W , q}^2 (u-1)-u \left( (u-1)+r_{q^\prime , q}^2\right) }\mathrm{d}u, \end{aligned}$$
(40)

where \(\varDelta _W= u \left( m_{q}^2 (u-1)+m_W^2\right) -m_{q^\prime }^2 (u-1)+q^2 v(u+v-1)\). Again this calculation was done via the unitary gauge.

Finally, for the Higgs contribution [Eq. (30)] we obtain:

$$\begin{aligned} \mathcal {F}_q^h\left( q^2\right) =m_q^2\int _0^1\int _0^{1-u}\frac{ (u^2-1) }{m_q^2 (u-1)^2+u m_h^2 + q^2 v(u+v-1)} \mathrm{d}v \mathrm{d}u, \end{aligned}$$
(41)

which for \(q^2=0\) reduces to

$$\begin{aligned} \mathcal {F}_q^h(0)=-\int ^1_0 \mathrm{d}u \frac{(1+u)(1-u)^2}{(1-u)^2+ur_{h,q}^2}. \end{aligned}$$
(42)

1.2 Passarino-Veltman results

We now present the above results in terms of Passarino-Veltman scalar integrals, where we use the standard notation for the two- and three-point scalar functions. Our calculation was done via a renormalizable linear \(R_\xi \) gauge and the BFM to verify that the dependence on the \(\xi \) gauge parameter drops out. The loop functions are thus gauge independent and read

$$\begin{aligned} {\mathcal {F}}_q^{\mathrm{QCD}_1}\left( q^2\right) =\frac{m_q^2 }{\eta ^2(\Vert q\Vert ,m_q)}\Big \{\mathbf {B}_0(0;m_q,m_q)-\mathbf {B}_0\left( q^2;m_q,m_q\right) +2\Big \}, \end{aligned}$$
(43)

where we define \(\eta (x,y)=\sqrt{x^2-4y^2}\). Also

$$\begin{aligned} {\mathcal {F}}_q^{\mathrm{QCD}_2}\left( q^2\right)&=\frac{m_q^2}{\eta ^4(\Vert q\Vert ,m_q)} \Big \{\left( 8 m_q^2+q^2\right) \left( \mathbf {B}_0(0;m_q,m_q)-\mathbf {B}_0\left( q^2;0,0\right) \right) \nonumber \\&\quad -6 m_q^2 \left( q^2 \mathbf {C}_0\left( m_q^2,m_q^2,q^2;0,m_q,0\right) -4\right) \Big \}, \end{aligned}$$
(44)
$$\begin{aligned} \mathcal {F}_q^{\mathrm{QCD}_2}(0)&=\frac{1}{2}\Big \{\mathbf {B}_0(0;m_q,m_q)+3\Big \}, \end{aligned}$$
(45)
$$\begin{aligned} \mathcal {F}_q^{A}\left( q^2\right)&=\frac{m_q^2}{\eta ^2(\Vert q\Vert ,m_q)}\Big \{\mathbf {B}_0 \left( 0;m_q,m_q\right) -\mathbf {B}_0\left( q^2;m_q,m_q\right) +2\Big \}, \end{aligned}$$
(46)
$$\begin{aligned} \mathcal {A}_q^{Z}\left( q^2\right)&=\frac{m_Z^2}{m_q^2\eta ^4(\Vert q\Vert ,m_q)} \Bigg \{\Big (q^2 \left( m_Z^2-8 m_q^2\right) \nonumber \\&\quad +10 m_q^2 \left( 2 m_q^2-m_Z^2\right) \Big ) \mathbf {B}_0\left( m_q^2;m_q,m_Z\right) \nonumber \\&\quad +\frac{m_q^2}{m_Z^2} \left( q^2 \left( 9 m_Z^2-2 m_q^2\right) + \left( 8 m_q^4-24 m_q^2 m_Z^2+6 m_Z^4\right) \right) \mathbf {B}_0\left( q^2;m_q,m_q\right) \nonumber \\&\quad + \frac{\left( 2 m_q^2+m_Z^2\right) \eta ^2(\Vert q\Vert ,m_q)}{m_Z^2}\left( m_q^2\mathbf {B}_0(0;m_q,m_q)-m_Z^2 \mathbf {B}_0(0;m_Z,m_Z)\right) \nonumber \\&\quad +2\Big (2 q^2 \left( 3 m_Z^2-7 m_q^2\right) +2 q^4 \nonumber \\&\quad +3\left( 8 m_q^4-6 m_q^2 m_Z^2+m_Z^4\right) \Big )m_q^2 \mathbf {C}_0\left( m_q^2,m_q^2,q^2;m_q,m_Z,m_q\right) \nonumber \\&\quad +\frac{(4m_q^4-m_Z^4) \eta ^2(\Vert q\Vert ,m_q)}{m_Z^2}\Bigg \}, \end{aligned}$$
(47)
$$\begin{aligned} \mathcal {V}_q^{Z}\left( q^2\right)&=\frac{m_Z^2}{m_q^2\eta ^4(\Vert q\Vert ,m_q)} \Bigg \{\Big (q^2 \left( m_Z^2-2 m_q^2\right) \nonumber \\&\quad +2 m_q^2 \left( 4 m_q^2-5 m_Z^2\right) \Big ) \mathbf {B}_0\left( m_q^2;m_q,m_Z\right) \nonumber \\&\quad + m_q^2\Big (2 \left( 3 m_Z^2-2 m_q^2\right) + q^2 \Big )\mathbf {B}_0\left( q^2;m_q,m_q\right) \nonumber \\&\quad +\eta ^2(\Vert q\Vert ,m_q)\left( m_q^2\mathbf {B}_0(0;m_q,m_q)-m_Z^2 \mathbf {B}_0(0;m_Z,m_Z)\right) \nonumber \\&\quad +\Big (4 q^2 +2 \left( 3 m_Z^2-8 m_q^2\right) \Big ) m_q^2 m_Z^2\mathbf {C}_0\left( m_q^2,m_q^2,q^2;m_q,m_Z,m_q\right) \nonumber \\&\quad +(2m_q^2-m_Z^2)\eta ^2(\Vert q\Vert ,m_q)\Bigg \}, \end{aligned}$$
(48)
$$\begin{aligned} \mathcal {A}_q^{Z}(0)&=\frac{m_Z^2}{8m_q^4}\Bigg \{\Big (10 m_q^2-5 m_Z^2\Big ) \mathbf {B}_0\left( m_q^2;m_q,m_Z\right) +\Big (3 m_Z^2 -14 m_q^2 \Big )\mathbf {B}_0(0;m_q,m_q)\nonumber \\&\quad +2\Big (2 m_q^2 + m_Z^2 \Big )\mathbf {B}_0(0;m_Z,m_Z)\nonumber \\&\quad +3\Big (m_Z^4 -6 m_q^2 m_Z^2 +8 m_q^4 \Big ) \mathbf {C}_0\left( m_q^2,m_q^2,0;m_q,m_Z,m_q\right) \nonumber \\&\quad +\frac{2}{m_Z^2} \left( m_Z^4-4m_q^4\right) \Bigg \}, \end{aligned}$$
(49)
$$\begin{aligned} \mathcal {V}_q^{Z}(0)&=\frac{m_Z^2}{8m_q^4} \Bigg \{\Big (4 m_q^2 -5 m_Z^2\Big ) \mathbf {B}_0\left( m_q^2;m_q,m_Z\right) +\Big (3 m_Z^2-4 m_q^2\Big ) \mathbf {B}_0(0;m_q,m_q)\nonumber \\&\quad +2 m_Z^2 \mathbf {B}_0(0;m_Z,m_Z) +\Big (3 m_Z^2 -8 m_q^2\Big )m_Z^2 \mathbf {C}_0\left( m_q^2,m_q^2,0;m_q,m_Z,m_q\right) \nonumber \\&\quad +2\left( m_Z^2-2 m_q^2\right) \Bigg \}, \end{aligned}$$
(50)
$$\begin{aligned} \mathcal {F}_{qq'}^{W}\left( q^2\right)&=\frac{1}{m_q^2\eta ^4(\Vert q\Vert ,m_q)} \Big \{ \eta ^2(\Vert q\Vert ,m_q) \left( m_q^2+m_{q^\prime }^2+2 m_W^2\right) \left( m_{q^\prime }^2\mathbf {B}_0(0;m_{q^\prime },m_{q^\prime })\right. \nonumber \\&\quad -\left. m_W^2\mathbf {B}_0(0;m_W,m_W)\right) \nonumber \\&\quad -\Big [q^2 \left( m_q^4+m_q^2 \left( 9 m_W^2-2 m_{q^\prime }^2\right) +m_{q^\prime }^4+m_{q^\prime }^2 m_W^2-2 m_W^4\right) \nonumber \\&\quad +2 m_q^2 \Big (m_q^4+m_q^2 \left( 4 m_{q^\prime }^2-9 m_W^2\right) \nonumber \\&\quad -5 \left( m_{q^\prime }^4+m_{q^\prime }^2 m_W^2-2 m_W^4\right) \Big )\Big ] \mathbf {B}_0\left( m_q^2;m_{q^\prime },m_W\right) \nonumber \\&\quad +m_q^2 \Big [q^2 \left( m_q^2-3 m_{q^\prime }^2+10 m_W^2\right) \nonumber \\&\quad +2 \left( m_q^4+m_q^2 \left( 6 m_{q^\prime }^2-11 m_W^2\right) -3 \left( m_{q^\prime }^4+m_{q^\prime }^2 m_W^2-2 m_W^4\right) \right) \Big ]\nonumber \\&\quad \mathbf {B}_0\left( q^2;m_{q^\prime },m_{q^\prime }\right) \nonumber \\&\quad -2 m_q^2 \Big [m_q^2\left( m_q^4-m_q^2 \left( 5 m_{q^\prime }^2+12 m_W^2\right) +\left( 7 m_{q^\prime }^4-12 m_{q^\prime }^2 m_W^2+17 m_W^4\right) \right) \nonumber \\&\quad -3\left( m_{q^\prime }^6-3 m_{q^\prime }^2 m_W^4+2 m_W^6\right) \nonumber \\ \end{aligned}$$
$$\begin{aligned}&\quad -q^2 \left( m_q^4-2 m_q^2 \left( m_{q^\prime }^2+4 m_W^2\right) +m_{q^\prime }^4-6 m_{q^\prime }^2 m_W^2+8 m_W^4\right) \nonumber \\&\quad -2 m_W^2 \left( q^2\right) ^2\Big ] \mathbf {C}_0\left( m_q^2,m_q^2,q^2;m_{q^\prime },m_W,m_{q^\prime }\right) \nonumber \\&\quad +\eta ^2(\Vert q\Vert ,m_q) \left( m_q^2+m_{q^\prime }^2-m_W^2\right) \left( m_q^2+m_{q^\prime }^2+2 m_W^2\right) \Big \}, \end{aligned}$$
(51)
$$\begin{aligned} \mathcal {F}_{qq'}^{W}(0)&=\frac{1}{ 8m_{q}^4}\Big \{2 m_W^2 \left( m_{q}^2+m_{q^\prime }^2+2 m_W^2\right) \mathbf {B}_0(0;m_W,m_W)\nonumber \\&\quad +\Big [m_{q}^4+m_{q}^2 \left( 4 m_{q^\prime }^2-11 m_W^2\right) \nonumber \\&\quad -5 m_{q^\prime }^4-7 m_{q^\prime }^2 m_W^2+6 m_W^4\Big ] \mathbf {B}_0(0;m_{q^\prime },m_{q^\prime })-\Big [m_{q}^4+m_{q}^2 \left( 4 m_{q^\prime }^2-9 m_W^2\right) \nonumber \\&\quad -5 \left( m_{q^\prime }^4+m_{q^\prime }^2 m_W^2-2 m_W^4\right) \Big ] \mathbf {B}_0\left( m_{q}^2;m_{q^\prime },m_W\right) +\Big [12 m_{q}^2 m_W^2 \left( m_{q}^2+m_{q^\prime }^2\right) \nonumber \\&\quad -m_W^4 \left( 17 m_{q}^2+9 m_{q^\prime }^2\right) -\left( m_{q}^2-3 m_{q^\prime }^2\right) \left( m_{q}^2-m_{q^\prime }^2\right) ^2+6 m_W^6\Big ]\nonumber \\&\quad \mathbf {C}_0\left( m_{q}^2,m_{q}^2,0;m_{q^\prime },m_W,m_{q^\prime }\right) \nonumber \\&\quad -2 \left( m_{q}^2+m_{q^\prime }^2-m_W^2\right) \left( m_{q}^2+m_{q^\prime }^2+2 m_W^2\right) \Big \}, \end{aligned}$$
(52)
$$\begin{aligned} \mathcal {F}_q^{h}\left( q^2\right)&=\frac{1}{\eta ^4(\Vert q\Vert ,m_q)} \Big \{\eta ^2(\Vert q\Vert ,m_q)\left( m_h^2\mathbf {B}_0(0;m_h,m_h)-m_q^2 \mathbf {B}_0(0;m_q,m_q)\right) \nonumber \\&\quad +\left( 4m_q^2\eta ^2(\Vert q\Vert ,m_q)+m_h^2(10 m_q^2- q^2)\right) \mathbf {B}_0\left( m_q^2;m_q,m_h\right) \nonumber \\&\quad -3m_q^2\left( \eta ^2(\Vert q\Vert ,m_q)-2 m_h^2\right) \mathbf {B}_0\left( q^2;m_q,m_q\right) \nonumber \\&\quad -6m_h^2 m_q^2\left( \eta ^2(\Vert q\Vert ,m_q)+m_h^2\right) \mathbf {C}_0\left( m_q^2,m_q^2,q^2;m_q,m_h,m_q\right) \nonumber \\&\quad +(m_h^2-2m_q^2)\eta ^2(\Vert q\Vert ,m_q)\Big \}, \end{aligned}$$
(53)

and

$$\begin{aligned} \mathcal {F}_q^{h}(0)&=-\frac{1}{8m_q^2}\Big \{\left( 3 m_h^2-8 m_q^2\right) \mathbf {B}_0(0;m_q,m_q)+\left( 8 m_q^2-5 m_h^2\right) \mathbf {B}_0\left( m_q^2;m_q,m_h\right) \nonumber \\&\quad +2 m_h^2 \mathbf {B}_0(0;m_h,m_h)+3 m_h^2 \left( m_h^2-4 m_q^2\right) \mathbf {C}_0\left( m_q^2,m_q^2,0;m_q,m_h,m_q\right) \nonumber \\&\quad +2 (m_h^2-2m_q^2)\Big \}. \end{aligned}$$
(54)

1.3 Closed form results

We also present the explicit solutions for the two-point scalar functions in terms of closed form functions. Below \(C_0\left( m_i^2,m_j^2,q^2;m_k,m_l,m_n\right) \) stands for a three-point Passarino-Veltman scalar function.

$$\begin{aligned} {\mathcal {F}}_q^{\mathrm{QCD}_1}\left( q^2\right)&=-\frac{m_q^2}{\Vert q\Vert \eta (\Vert q\Vert ,m_q)}\log \left( \frac{\Vert q\Vert \eta (\Vert q\Vert ,m_q)+2 m_q^2-q^2}{2 m_q^2}\right) , \end{aligned}$$
(55)
$$\begin{aligned} {\mathcal F}_q^{\mathrm{QCD}_2}\left( q^2\right)&=-\frac{m_q^2}{\eta ^4(\Vert q\Vert ,m_q)} \Bigg \{q^2 \Bigg [6 m_q^2 C_0\left( m_q^2,m_q^2,q^2;0,m_q,0\right) +\log \left( \frac{m_q^2}{q^2}\right) +2+i\pi \Bigg ]\nonumber \\&\quad +8 m_q^2 \Bigg [\log \left( \frac{m_q^2}{q^2}\right) -1+i\pi \Bigg ]\Bigg \}, \end{aligned}$$
(56)
$$\begin{aligned} {\mathcal F}_q^{\mathrm{QCD}_2}(0)&= \frac{1}{2} \Bigg \{\frac{1}{\epsilon }+\log \left( \frac{\mu ^2}{m_q^2}\right) +3\Bigg \}, \end{aligned}$$
(57)
$$\begin{aligned} {\mathcal F}_q^{A}\left( q^2\right)&=-\frac{m_q^2}{\Vert q\Vert \eta (\Vert q\Vert ,m_q)}\log \left( \frac{\Vert q\Vert \eta (\Vert q\Vert ,m_q)+2 m_q^2-q^2}{2 m_q^2}\right) , \end{aligned}$$
(58)
$$\begin{aligned} {\mathcal {A}}_q^{Z}\left( q^2\right)&=\frac{m_Z^2}{2 m_q^2\eta ^4(\Vert q\Vert ,m_q)} \Bigg \{ \Bigg (20 m_Z \left( 2 m_q^2-m_Z^2\right) \nonumber \\&\quad +\frac{2 m_Z \left( m_Z^2-8 m_q^2\right) q^2 }{m_q^2}\Bigg ) \eta (m_Z,m_q) \log \left( \frac{m_Z+\eta (m_Z,m_q)}{2 m_q}\right) \nonumber \\&\quad + 2\left( \frac{ \left( 9 m_Z^2-2 m_q^2\right) }{m_Z^2}+\frac{ \left( 8 m_q^4-24 m_Z^2 m_q^2+6 m_Z^4\right) }{m_Z^2 q^2} \right) m_q^2\Vert q\Vert \eta (\Vert q\Vert ,m_q)\nonumber \\&\quad \log \left( \frac{2 m_q^2-q^2+\Vert q\Vert \eta (\Vert q\Vert ,m_q)}{2 m_q^2}\right) \nonumber \\&\quad +\left( 2 \left( 8 m_q^4+14 m_Z^2 m_q^2-5 m_Z^4\right) +\frac{\left( -4 m_q^4-10 m_Z^2 m_q^2+m_Z^4\right) q^2}{m_q^2}\right) \nonumber \\&\quad \log \left( \frac{m_q^2}{m_Z^2}\right) + \Big (8 \left( q^2\right) ^2 +12 \left( 8 m_q^4-6 m_Z^2 m_q^2+m_Z^4\right) \nonumber \\&\quad +8 \left( 3 m_Z^2-7 m_q^2\right) q^2\Big ) m_q^2C_0\left( m_q^2,m_q^2,q^2;m_q,m_Z,m_q\right) \nonumber \\&\quad +2 \left( 2 m_q^2+m_Z^2\right) \eta ^2(\Vert q\Vert ,m_q) \Bigg \}, \end{aligned}$$
(59)
$$\begin{aligned} {\mathcal {V}}_q^{Z}\left( q^2\right)&=\frac{m_Z^2}{2 m_q^2\eta ^4(\Vert q\Vert ,m_q)}\Bigg \{ 2m_Z^2\Big ( \left( 3 m_Z^2-8 m_q^2\right) +2 q^2\Big ) m_q^2C_0\nonumber \\&\quad \left( m_q^2,m_q^2,q^2;m_q,m_Z,m_q\right) \nonumber \\&\quad +\Bigg (\frac{4 \left( 3 m_Z^2-2 m_q^2\right) }{q^2}+2\Bigg ) m_q^2\Vert q\Vert \eta ^2(\Vert q\Vert ,m_q) \log \nonumber \\&\quad \left( \frac{2 m_q^2-q^2+\Vert q\Vert \eta (\Vert q\Vert ,m_q)}{2 m_q^2}\right) \nonumber \\&\quad +2 m_Z^2 \eta (\Vert q\Vert ,m_q)+\Bigg (2 m_Z^2 \left( 8 m_q^2-5 m_Z^2\right) +\frac{m_Z^2 \eta ^2(m_Z,m_q)q^2 }{m_q^2}\Bigg ) \nonumber \\&\quad \log \left( \frac{m_q^2}{m_Z^2}\right) +\Bigg (4 m_Z \left( 4 m_q^2-5 m_Z^2\right) +\frac{2 m_Z \left( m_Z^2-2 m_q^2\right) q^2 }{m_q^2}\Bigg ) \eta (m_Z,m_q) \log \nonumber \\&\quad \left( \frac{m_Z+\eta (m_Z,m_q)}{2 m_q}\right) \Bigg \}, \end{aligned}$$
(60)
$$\begin{aligned} {\mathcal {A}}_q^{Z}(0)&=\frac{m_Z^2}{2 m_q^6}\Bigg \{-\frac{m_q^2 \left( m_q^2-2 m_Z^2\right) \left( 2 m_q^2-m_Z^2\right) }{m_Z^2}+\left( -2 m_q^4+4 m_q^2 m_Z^2-m_Z^4\right) \nonumber \\&\quad \log \left( \frac{m_q^2}{m_Z^2}\right) \nonumber \\&\quad -\frac{2\left( 8 m_q^4-6 m_q^2 m_Z^2+m_Z^4\right) m_Z}{\eta (m_Z,m_q)} \log \left( \frac{m_Z+\eta (m_Z,m_q)}{2 m_q }\right) \Bigg \}, \end{aligned}$$
(61)
$$\begin{aligned} {\mathcal {V}}_q^{Z}(0)&=\frac{m_Z^2}{2 m_q^6}\Bigg \{m_q^2 \left( m_q^2-2 m_Z^2\right) -m_Z^2 \left( m_Z^2-2 m_q^2\right) \log \left( \frac{m_q^2}{m_Z^2}\right) \nonumber \\&\quad -\frac{2 \left( 2 m_q^4-4 m_q^2 m_Z^2+m_Z^4\right) }{\eta (m_Z,m_q)} \log \left( \frac{\eta (m_Z,m_q)+m_Z}{2 m_q}\right) \Bigg \}, \end{aligned}$$
(62)
$$\begin{aligned} {\mathcal {F}}_{qq'}^{W}\left( q^2\right)&= \frac{1}{2 m_q^2\eta ^4(\Vert q\Vert ,m_q)} \Bigg \{-4 m_q^2 \Big (m_q^6-m_q^4 \left( 5 m_{q^\prime }^2+12 m_W^2\right) \nonumber \\&\quad +m_q^2 \left( 7 m_{q^\prime }^4-12 m_{q^\prime }^2 m_W^2+17 m_W^4\right) \nonumber \\&\quad -q^2 \left( m_q^4-2 m_q^2 \left( m_{q^\prime }^2+4 m_W^2\right) +m_{q^\prime }^4-6 m_{q^\prime }^2 m_W^2+8 m_W^4\right) \nonumber \\&\quad -3 \left( m_{q^\prime }^6-3 m_{q^\prime }^2 m_W^4+2 m_W^6\right) \nonumber \\&\quad -2 m_W^2 \left( q^2\right) ^2\Big ) C_0\left( m_q^2,m_q^2,q^2;m_{q^\prime },m_W,m_{q^\prime }\right) \nonumber \\&\quad +2 \eta ^2(\Vert q\Vert ,m_q) \big (m_q^4+3 m_q^2 m_W^2-m_{q^\prime }^4-m_{q^\prime }^2 m_W^2+2 m_W^4\big )\nonumber \\&\quad +\frac{2 m_q^2 }{q^2}\Vert q\Vert \eta (\Vert q\Vert ,m_q') \Big (2 \left( m_q^4+m_q^2\left( 6 m_{q^\prime }^2-11 m_W^2\right) \right. \nonumber \\&\quad -\left. 3\left( m_{q^\prime }^4+m_{q^\prime }^2 m_W^2-2 m_W^4\right) \right) \nonumber \\&\quad +q^2 \big (-3 m_{q^\prime }^2+m_q^2+10 m_W^2\big )\Big )\log \left( \frac{\Vert q\Vert \eta (\Vert q\Vert ,m_q')+2 m_{q^\prime }^2-q^2}{2 m_{q^\prime }^2}\right) \nonumber \\&\quad -\frac{2 }{m_q^2}\sqrt{((m_q - m_q')^2 - m_W^2) ((m_q + m_q')^2 - m_W^2)} \Big (q^2 \big (m_q^4\nonumber \\&\quad +m_q^2 \left( 9 m_W^2-2m_{q^\prime }^2\right) +m_{q^\prime }^4+m_{q^\prime }^2 m_W^2\nonumber \\&\quad -2 m_W^4\big )+2 m_q^2 \left( m_q^4+m_q^2 \left( 4 m_{q^\prime }^2-9 m_W^2\right) -5 \left( m_{q^\prime }^4+m_{q^\prime }^2 m_W^2-2 m_W^4\right) \right) \Big )\nonumber \\&\quad \times \log \left( \frac{\sqrt{((m_q - m_q')^2 - m_W^2) ((m_q + m_q')^2 - m_W^2)}+m_{q^\prime }^2-m_q^2+m_W^2}{2 m_{q^\prime } m_W}\right) \nonumber \\&\quad -\frac{1}{m_q^2} \Big (q^2 \big (m_q^6-3 m_q^4 \left( m_{q^\prime }^2-4 m_W^2\right) +m_q^2 \left( 3 m_{q^\prime }^4-8 m_{q^\prime }^2 m_W^2+11 m_W^4\right) \nonumber \\&\quad -m_{q^\prime }^6+3 m_{q^\prime }^2 m_W^4-2 m_W^6\big )+2 m_q^2 \big (m_q^6+3 m_q^4 \left( m_{q^\prime }^2-4 m_W^2\right) \nonumber \\ \end{aligned}$$
$$\begin{aligned}&\quad +m_q^2 \left( -9 m_{q^\prime }^4+4 m_{q^\prime }^2 m_W^2-7 m_W^4\right) \nonumber \\&\quad +5 \left( m_{q^\prime }^6-3 m_{q^\prime }^2 m_W^4+2 m_W^6\right) \big )\Big )\log \left( \frac{m_{q^\prime }^2}{m_W^2}\right) \Bigg \}, \end{aligned}$$
(63)
$$\begin{aligned} {\mathcal {F}}_{qq'}^{W}(0)&=\frac{1}{2m_q^6} \left\{ m_q^2 \Big (-m_q^4-m_q^2 \left( 3 m_{q^\prime }^2-4 m_W^2\right) +2 \left( m_{q^\prime }^4+m_{q^\prime }^2 m_W^2-2 m_W^4\right) \Big )\right. \nonumber \\&\quad -\left( m_q^4 m_{q^\prime }^2+m_q^2 \left( -2 m_{q^\prime }^4+2 m_{q^\prime }^2 m_W^2-3 m_W^4\right) +m_{q^\prime }^6-3 m_{q^\prime }^2 m_W^4+2 m_W^6\right) \nonumber \\&\quad \log \left( \frac{m_{q^\prime }^2}{m_W^2}\right) \nonumber \\&\quad -\frac{2}{\sqrt{((m_q - m_q')^2 - m_W^2) ((m_q + m_q')^2 - m_W^2)}} \Big (m_q^6 m_{q^\prime }^2\nonumber \\&\quad +m_q^4 \left( -3 m_{q^\prime }^4+m_{q^\prime }^2 m_W^2+3 m_W^4\right) \nonumber \\&\quad +m_q^2 \left( 3 m_{q^\prime }^6-2 m_{q^\prime }^4 m_W^2+4 m_{q^\prime }^2 m_W^4-5 m_W^6\right) \nonumber \\&\quad -\left( m_{q^\prime }^2-m_W^2\right) ^3 \left( m_{q^\prime }^2+2 m_W^2\right) \Big ) \nonumber \\&\quad \times \left. \log \left( \frac{\sqrt{((m_q - m_q')^2 - m_W^2) ((m_q + m_q')^2 - m_W^2)}+m_{q^\prime }^2-m_q^2+m_W^2}{2 m_{q^\prime } m_W}\right) \right\} , \end{aligned}$$
(64)
$$\begin{aligned} {\mathcal {F}}_q^{h}\left( q^2\right)&=-\frac{1}{2m_q^2 \eta ^4(\Vert q\Vert ,m_q)} \Bigg \{12 m_q^4 m_h^2 \left( \eta (\Vert q\Vert ,m_q)+m_h^2\right) \nonumber \\&\quad C_0\left( m_q^2,m_q^2,q^2;m_q,m_h,m_q\right) \nonumber \\&\quad +2 m_q^2 m_h^2 \eta (\Vert q\Vert ,m_q)+\frac{6 m_q^4}{q^2} \Vert q\Vert \eta (\Vert q\Vert ,m_q) \left( \eta ^2(\Vert q\Vert ,m_q)\right. \nonumber \\&\quad +\left. 2m_h^2\right) \log \left( \frac{\Vert q\Vert \eta (\Vert q\Vert ,m_q)+2 m_q^2-q^2}{2 m_q^2}\right) \nonumber \\&\quad +m_h^2 \left( 24 m_q^4+q^2 \left( m_h^2-6 m_q^2\right) -10 m_q^2 m_h^2\right) \log \left( \frac{m_q^2}{m_h^2}\right) \nonumber \\&\quad -2m_h\eta (m_h,m_q) \left( -16 m_q^4-q^2 \eta (m_h,m_q)+10 m_q^2 m_h^2\right) \nonumber \\&\quad \log \left( \frac{\eta (m_h,m_q)+m_h}{2 m_q }\right) \Bigg \}, \end{aligned}$$
(65)

and

$$\begin{aligned} {\mathcal {F}}_q^{h}(0)&=-\frac{1}{2m_q^4} \Bigg \{m_q^2(3 m_q^2-2 m_h^2)+2 m_h \left( m_q^2-m_h^2\right) \eta (m_h,m_q) \log \left( \frac{\eta (m_h,m_q)+m_h}{2 m_q}\right) \nonumber \\&\quad +m_h^2\left( 3 m_q^2-m_h^2\right) \log \left( \frac{m_q^2}{m_h^2}\right) \Bigg \}. \end{aligned}$$
(66)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Juárez, A.I., Moyotl, A. & Tavares-Velasco, G. New estimate of the chromomagnetic dipole moment of quarks in the standard model. Eur. Phys. J. Plus 136, 262 (2021). https://doi.org/10.1140/epjp/s13360-021-01239-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01239-9

Navigation