Skip to main content
Log in

A compressive study for porous FG curved nanobeam under various boundary conditions via a nonlocal strain gradient theory

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper is concerned with the analysis of deflection, stresses, buckling and vibration analysis for a porous functionally graded (FG) curved nanobeam with different boundary conditions using a nonlocal strain gradient theory. The curved nanobeam is made of porous FG material. This property varies according to a power-law function over the thickness. The stresses can be calculated on the basis of the nonlocal strain gradient elasticity model which contains both the nonlocal stress and strain gradients stress field. The Hamilton’s principle is adopted in order to develop differential equation and boundary condition. Numerical results with various cases of boundary conditions are carried out with a view to discuss the influences of porosity factor, nonlocal, length-scale parameters and gradient index on the deflection, stresses, buckling and vibration of porous FG curved nanobeam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository [Authors’ comment: All data generated or analysed during this study are included in this published article.]

References

  1. M. Şimsşk, Large amplitude free vibration of nanobeams with various boundary conditions based on the nonlocal elasticity theory. Compos. Part B: Eng. 56, 621–628 (2014)

    Article  Google Scholar 

  2. H.-T. Thai, A nonlocal beam theory for bending, buckling, and vibration of nanobeams. Int. J. Eng. Sci. 52, 56–64 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. L.-L. Ke, Y.-S. Wang, Z.-D. Wang, Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory. Compos. Struct. 94, 2038–2047 (2012)

    Article  Google Scholar 

  4. S. Hosseini-Hashemi, R. Nazemnezhad, An analytical study on the nonlinear free vibration of functionally graded nanobeams incorporating surface effects. Compos. Part B Eng. 52, 199–206 (2013)

    Article  Google Scholar 

  5. A.M. Zenkour, A.F. Radwan, Bending response of FG plates resting on elastic foundations in hygrothermal environment with porosities. Compos. Struct. 213, 133–143 (2019)

    Article  Google Scholar 

  6. A..M.. Zenkour, A..F.. Radwan, Hygrothermo-mechanical buckling of FGM plates resting on elastic foundations using a quasi-3D model. Int. J. Comput. Methods Eng. Sci. Mech. 20, 85–98 (2019)

    Article  MathSciNet  Google Scholar 

  7. M. Sobhy, A.M. Zenkour, Vibration analysis of functionally graded graphene platelet-reinforced composite doubly-curved shallow shells on elastic foundations. Steel Compos. Struct. 33, 195–208 (2019)

    Google Scholar 

  8. F. Ebrahimi, E. Salari, Thermo-mechanical vibration analysis of nonlocal temperature-dependent FG nanobeams with various boundary conditions. Compos. Part B: Eng. 78, 272–290 (2015)

    Article  Google Scholar 

  9. M. Aydogdu, A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration. Phys. E: Low-dimens. Syst. Nanostruct. 41, 1651–1655 (2009)

    Article  ADS  Google Scholar 

  10. M.A. Eltaher, S.A. Emam, F.F. Mahmoud, Free vibration analysis of functionally graded size-dependent nanobeams. Appl. Math. Comput. 218, 7406–7420 (2012)

    MathSciNet  MATH  Google Scholar 

  11. M. Arefi, A.M. Zenkour, Thermal stress and deformation analysis of a size-dependent curved nanobeam based on sinusoidal shear deformation theory. Alexandria Eng. J. 57, 2177–2185 (2019)

    Article  Google Scholar 

  12. A.M. Zenkour, Nonlocal elasticity and shear deformation effects on thermal buckling of a CNT embedded in a viscoelastic medium. The Eur. Phys. J. Plus 133, 196 (2018)

    Article  Google Scholar 

  13. P. Lu, H.P. Lee, C. Lu, P.Q. Zhang, Application of nonlocal beam models for carbon nanotubes. Int. J. Solids Struct. 44, 5289–5300 (2007)

    Article  MATH  Google Scholar 

  14. M.A. Eltaher, M.E. Khater, S. Park, E. Abdel-Rahman, M. Yavuz, On the static stability of nonlocal nanobeams using higher-order beam theories. Adv. Nano Res. 4, 51–64 (2016)

    Article  Google Scholar 

  15. J. Ehyaei, F. Ebrahimi, E. Salari, Nonlocal vibration analysis of FG nanobeams with different boundary conditions. Adv. Nano Res. 4, 85–111 (2016)

    Article  Google Scholar 

  16. A.M. Zenkour, A novel mixed nonlocal elasticity theory for thermoelastic vibration of nanoplates. Compos. Struct. 185, 821–833 (2018)

    Article  Google Scholar 

  17. A.F. Radwan, Quasi-3D integral model for thermomechanical buckling and vibration of FG porous nanoplates embedded in an elastic medium. Int. J. Mech. Sci. 157, 320–335 (2019)

    Article  Google Scholar 

  18. A.N. Alizada, A.H. Sofiyev, On the mechanics of deformation and stability of the beam with a nanocoating. J. Reinf. Plast. Compos. 30, 1583–1595 (2011)

    Article  ADS  Google Scholar 

  19. A.N. Alizada, A.H. Sofiyev, Modified Young’s moduli of nano-materials taking into account the scale effects and vacancies. Meccanica 46, 915–920 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. A.N. Alizada, A.H. Sofiyev, N. Kuruoglu, The stress analysis of the substrate coated by nanomaterials with vacancies subjected to the uniform extension load. Acta Mech. 223, 1371–1383 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. T. Ye, G. Jin, X. Ye, X. Wang, A series solution for the vibrations of composite laminated deep curved beams with general boundaries. Compos. Struct. 127, 450–465 (2015)

    Article  Google Scholar 

  22. A. Assadi, B. Farshi, Size dependent vibration of curved nanobeams and rings including surface energies. Phys. E: Low-dimens. Syst. Nanostruct. 43, 975–978 (2011)

    Article  ADS  Google Scholar 

  23. S.A.H. Hosseini, O. Rahmani, Free vibration of shallow and deep curved FG nanobeam via nonlocal Timoshenko curved beam model. Appl. Phys. A 122, 169 (2016)

    Article  ADS  Google Scholar 

  24. A. Assadi, B. Farshi, Size dependent vibration of curved nanobeams and rings including surface energies. Phys. E Low-Dimens. Syst. Nanostruct. 43, 975–978 (2011)

    Article  ADS  Google Scholar 

  25. Z. Yan, L. Jiang, Electromechanical response of a curved piezoelectric nanobeam with the consideration of surface effects. J. Phys. D: Appl. Phys. 44, 365301 (2011)

    Article  ADS  Google Scholar 

  26. S.A. Hosseini, O. Rahmani, Free vibration of shallow and deep curved FG nanobeam via nonlocal Timoshenko curved beam model. Appl. Phys. A (2016). https://doi.org/10.1007/s00339-016-9696-4

    Article  Google Scholar 

  27. I. Bensaid, A. Guenanou, Bending and stability analysis of size-dependent compositionally graded Timoshenko nanobeams with porosities. Advanc. Mater. Res. 6, 45–63 (2017)

    Article  Google Scholar 

  28. M.R. Barati, M.H. Sadr, A.M. Zenkour, Buckling analysis of higher order graded smart piezoelectric plates with porosities resting on elastic foundation. Int. J. Mech. Sci. 117, 309–320 (2016)

    Article  Google Scholar 

  29. A.M. Zenkour, A quasi-3D refined theory for functionally graded single-layered and sandwich plates with porosities. Compos. Struct. 201, 38–48 (2018)

    Article  Google Scholar 

  30. A. Mojahedin, M. Jabbari, A.R. Khorshidvand, M.R. Eslami, Buckling analysis of functionally graded circular plates made of saturated porous materials based on higher order shear deformation theory. Thin-Walled Struct. 99, 83–90 (2016)

    Article  Google Scholar 

  31. M.R. Feyzi, A.R. Khorshidvand, Axisymmetric post-buckling behavior of saturated porous circular plates. Thin-Walled Struct. 112, 149–58 (2017)

    Article  Google Scholar 

  32. A.S. Rezaei, A.R. Saidi, Buckling response of moderately thick fluid-infiltrated porous annular sector plates. Acta Mech. 228, 3929–3945 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. P.H. Cong, T.M. Chien, N.D. Khoa, N.D. Duc, Nonlinear thermomechanical buckling and post-buckling response of porous FGM plates using Reddy’s HSDT. Aerosp. Sci. Technol. 77, 419–428 (2018)

    Article  Google Scholar 

  34. M.H. Shojaeefard, H.S. Googarchin, M. Ghadiri, M. Mahinzare, Micro temperaturedependent FG porous plate: free vibration and thermal buckling analysis using modified couple stress theory with CPT and FSDT. Appl. Math. Model. 50, 633–655 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. F. Ebrahimi, M. Daman, Dynamic characteristics of curved inhomogeneous nonlocal porous beams in thermal environment. Struct. Eng. Mech. 64, 121–133 (2017)

    Google Scholar 

  36. H. Ait Atmane, A. Tounsi, F. Bernard, S..R.. Mahmoud, A computational shear displacement model for vibrational analysis of functionally graded beams with porosities. Steel Compos. Struct. 19, 369–384 (2015)

    Article  Google Scholar 

  37. S. Ait Yahia, H. Ait Atmane, M..S..A.. Houari, A. Tounsi, Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories. Struct. Eng. Mech. 53, 1143–1165 (2015)

    Article  Google Scholar 

  38. A.M. Zenkour, A.F. Radwan, Bending and buckling analysis of FGM plates resting on elastic foundations in hygrothermal environment. Arch. Civil Mech. Eng. 20, 1–23 (2020)

    Article  Google Scholar 

  39. F. Mouaici, S. Benyoucef, H. Ait Atmane, A. Tounsi, Effect of porosity on vibrational characteristics of non-homogeneous plates using hyperbolic shear deformation theory. Wind Struct. 22, 429–454 (2016)

    Article  Google Scholar 

  40. L. Li, T. Haishan, Hu.. Yujin, Size-dependent nonlinear vibration of beam-type porous materials with Size-dependent nonlinear vibration of beam-type porous materials with an initial geometrical curvature. Compos. Struct. 184, 1177–1188 (2018)

    Article  Google Scholar 

  41. ŞD. Akbaş, Nonlinear static analysis of functionally graded porous beams under thermal effect. Coupled Syst. Mech. 6, 399–415 (2017)

    Google Scholar 

  42. C.W. Lim, C.M. Wang, Exact variational nonlocal stress modeling with asymptotic higher-order strain gradients for nanobeams. J. Appl. Phys. 101, 054312 (2007)

    Article  ADS  Google Scholar 

  43. D.C.C. Lam, F. Yang, A.C.M. Chong, J. Wang, P. Tong, Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    Article  ADS  MATH  Google Scholar 

  44. N.A. Fleck, G.M. Muller, M.F. Ashby, J.W. Hutchinson, Strain gradient plasticity: theory and experiment. Acta. Metall. Mater. 42, 475–487 (1994)

    Article  Google Scholar 

  45. M.N.M. Allam, A.F. Radwan, Nonlocal strain gradient theory for bending, buckling, and vibration of viscoelastic functionally graded curved nanobeam embedded in an elastic medium. Adv. Mech. Eng. 11, 1687814019837067 (2019)

    Article  Google Scholar 

  46. A.F. Radwan, M. Sobhy, A nonlocal strain gradient model for dynamic deformation of orthotropic viscoelastic graphene sheets under time harmonic thermal load. Phys. B: Condens. Matter 538, 74–84 (2018)

    Article  ADS  Google Scholar 

  47. C.W. Lim, G. Zhang, J.N. Reddy, A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. L. Li, Y. Hu, Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory. Int. J. Eng. Sci. 97, 84–94 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. L. Li, X. Li, Y. Hu, Free vibration analysis of nonlocal strain gradient beams made of functionally graded material. Int. J. Eng. Sci. 102, 77–92 (2016)

    Article  MATH  Google Scholar 

  50. Y. Yue, K. Xu, E.C. Aifantis, Strain gradient and electric field gradient effects in piezoelectric cantilever beams. J. Mech. Behav. Mater. 24, 121–127 (2015)

    Article  Google Scholar 

  51. E.C. Aifantis, On the role of gradients in the localization of deformation and fracture. Int. J. Eng. Sci. 30, 1279–1299 (1992)

    Article  MATH  Google Scholar 

  52. E.C. Aifantis, On the gradient approach-Relation to Eringen’s nonlocal theory. Int. J. Eng. Sci. 49, 1367–1377 (2011)

    Article  MathSciNet  Google Scholar 

  53. A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  ADS  Google Scholar 

  54. A.C. Eringen, Nonlocal polar elastic continua. Int. J. Eng. Sci. 10, 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  55. A.C. Eringen, D.G.B. Edelen, On nonlocal elasticity. Int. J. Eng. Sci. 10, 233–248 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  56. F. Ebrahimi, M.R. Barati, A nonlocal strain gradiant refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams. Compos. Struct. 159, 174–182 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Zenkour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zenkour, A.M., Radwan, A.F. A compressive study for porous FG curved nanobeam under various boundary conditions via a nonlocal strain gradient theory. Eur. Phys. J. Plus 136, 248 (2021). https://doi.org/10.1140/epjp/s13360-021-01238-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01238-w

Navigation