Skip to main content

Advertisement

Log in

Bending and buckling analysis of FGM plates resting on elastic foundations in hygrothermal environment

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

The present paper deals with the effect of exponential temperature and moisture concentration on the bending and buckling analysis of functionally graded plates resting on two-parameter elastic foundations via a four-variable exponential shear deformation theory. The mechanical properties of the plates are assumed to vary through the thickness. The equations of equilibrium are derived using Hamilton’s principle. The present solutions are derived using Navier’s method. Using Navier’s solution the numerical results are presented and compared well with those available in the literature. Discussions are made to show how the foundation stiffness, hygrothermal loading and other parameters have a significant influence on the bending and buckling analysis of FG plates under hygrothermal and mechanical loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Matsuo S, Watari F, Ohata N. Fabrication of functionally graded dental composite resin post and core by laser lithography and finite element analysis of its stress relaxation effect on tooth root. Dental Mater J. 2001;20:257–74.

    Article  Google Scholar 

  2. Malinina M, Sammi T, Gasik M. Corrosion resistance of homogeneous and FGM coatings. Mater Sci Forum. 2005;2:305–10.

    Article  Google Scholar 

  3. Marin L. Numerical solution of the Cauchy problem for steady-state heat transfer in two dimensional functionally graded materials. Int J Solids Struct. 2005;42:4338–511.

    Article  MATH  Google Scholar 

  4. Lu L, Chekroun M, Abraham O, Maupin V, Villain G. Mechanical properties estimation of functionally graded materials using surface waves recorded with a laser interferometer. NDT&E Int. 2011;44:169–77.

    Article  Google Scholar 

  5. Müller E, Drăsar C, Schilz J, Kaysser WA. Functionally graded materials for sensor and energy applications. Mater Sci Eng A. 2003;362:17–30.

    Article  Google Scholar 

  6. Kashtalyan M. Three-dimensional elasticity solution for bending of functionally graded rectangular plates. Eur J Mech A Solids. 2004;23:853–64.

    Article  MATH  Google Scholar 

  7. Woodward B, Kashtalyan M. Three-dimensional elasticity solution for bending of transversely isotropic functionally graded plates. Eur J Mech A Solids. 2011;30:705–18.

    Article  MathSciNet  MATH  Google Scholar 

  8. Zenkour AM. Benchmark trigonometric and 3-D elasticity solutions for an exponentially graded thick rectangular plate. Arch Appl Mech. 2006;77:197–21414.

    Article  MATH  Google Scholar 

  9. Zenkour AM. Generalized shear deformation theory for bending analysis of functionally graded plates. Appl Math Model. 2006;30:67–84.

    Article  MATH  Google Scholar 

  10. Zhong Z, Shang E. Closed-form solutions of three-dimensional functionally graded plates. Mech Adv Mater Struct. 2008;15:355–63.

    Article  Google Scholar 

  11. Yun W, Rongqiao X, Haojiang D. Three-dimensional solution of axisymmetric bending of functionally graded circular plates. Compos Struct. 2010;92:1683–93.

    Article  Google Scholar 

  12. Yang B, Ding HJ, Chen WQ. Elasticity solutions for functionally graded rectangular plates with two opposite edges simply supported. Appl Math Model. 2012;36:488–503.

    Article  MathSciNet  MATH  Google Scholar 

  13. Mechab I, Mechab B, Benaissa S. Static and dynamic analysis of functionally graded plates using four-variable refined plate theory by the new function. Compos Part B Eng. 2013;45:748–57.

    Article  Google Scholar 

  14. Thai HT, Choi DH. A simple first-order shear deformation theory for the bending and free vibration analysis of functionally graded plates. Compos Struct. 2013;101:332–40.

    Article  Google Scholar 

  15. Zenkour AM, Radwan AF. Compressive study of functionally graded plates resting on Winkler-Pasternak foundations under various boundary conditions using hyperbolic shear deformation theory. Arch Civil Mech Eng. 2018;18:645–58.

    Article  Google Scholar 

  16. Zenkour AM. Hygro-themo-mechanical effects on FGM plates resting on elastic foundations. Compos Strut. 2010;93:234–8.

    Article  Google Scholar 

  17. Challamel N, Zorica D, Atanacković TM, Spasić DT. On the fractional generalization of Eringen’s nonlocal elasticity for wave propagation. CR Mech. 2013;34:298–303.

    Article  Google Scholar 

  18. Oskouie MF, Ansari R, Rouhi H. Bending analysis of functionally graded nanobeams based on the fractional nonlocal continuum theory by the variational Legendre spectral collocation method. Meccanica. 2018;53:1115–30.

    Article  MathSciNet  MATH  Google Scholar 

  19. Rahimi Z, Rezazadeh G, Sumelka W. A non-local fractional stress–strain gradient theory. Int J Mech Mater Des. 2020;16:265–78.

    Article  Google Scholar 

  20. Ghayesh MH. Nonlinear oscillations of FG cantilevers. Appl Acoust. 2019;145:393–8.

    Article  Google Scholar 

  21. Ghayesh MH. Viscoelastic mechanics of Timoshenko functionally graded imperfect microbeams. Compos Struct. 2019;225:110974.

    Article  Google Scholar 

  22. Ghayesh MH. Mechanics of viscoelastic functionally graded microcantilevers. Eur J Mech A Solids. 2019;73:492–9.

    Article  MathSciNet  MATH  Google Scholar 

  23. Ghayesh MH. Dynamics of functionally graded viscoelastic microbeams. Int J Eng Sci. 2018;124:115–31.

    Article  MathSciNet  MATH  Google Scholar 

  24. Ghayesh MH. Viscoelastic dynamics of axially FG microbeams. Int J Eng Sci. 2019;135:75–85.

    Article  MathSciNet  MATH  Google Scholar 

  25. Brischetto S, Leetsch R, Carrera E, Wallmersperger T, Krplin B. Thermo-mechanical bending of functionally graded plates. J Therm Stress. 2008;31:286–308.

    Article  Google Scholar 

  26. Cinefra M, Carrera E, Brischetto S, Belouettar S. Thermo-mechanical analysis of functionally graded shells. J Therm Stress. 2010;33:942–63.

    Article  Google Scholar 

  27. Matsunaga H. Stress analysis of functionally graded plates subjected to thermal and mechanical loadings. Compos Struct. 2009;87:344–57.

    Article  Google Scholar 

  28. Zenkour AM. The effect of transverse shear and normal deformations on the thermomechanical bending of functionally graded sandwich plates. Int J Appl Mech. 2009;1:667–707.

    Article  Google Scholar 

  29. Zenkour AM, Alghamdi NA. Thermomechanical bending response of functionally graded nonsymmetric sandwich plates. J Sandwich Struct Mater. 2009;12:7–46.

    Article  Google Scholar 

  30. Zenkour AM, Allam MNM, Radwan AF. Effects of transverse shear and normal strains on FG plates resting on elastic foundations under hygro-thermo-mechanical loading. Int J Appl Mech. 2014;6:1450063.

    Article  Google Scholar 

  31. Zenkour AM, Allam MNM, Radwan AF. Effects of hygrothermal conditions on cross-ply laminated plates resting on elastic foundations. Arch Civil Mech Eng. 2014;14:144–59.

    Article  Google Scholar 

  32. Reddy JN, Chin C. Thermomechanical analysis of functionally graded cylinders and plates. J Therm Stress. 1998;212:593–626.

    Article  Google Scholar 

  33. Vel S, Batra R. Exact solution for thermoelastic deformations of functionally graded thick rectangular plates. AIAA J. 2012;40:1421–33.

    Article  Google Scholar 

  34. Ying J, Lu C, Lim CW. 3D thermoelasticity solutions for functionally graded thick plates. J Zhejiang Univ Sci A. 2009;10:327–36.

    Article  MATH  Google Scholar 

  35. Winkler E. Die Lehre von der Elasticitaet und Festigkeit. Prague: Dominicus; 1867.

    Google Scholar 

  36. Pasternak PL. On a new method of analysis of an elastic foundation by means of two foundation constants. Moscow: Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstvu iArkhitekture; 1954. p. 1–56.

    Google Scholar 

  37. Lam KY, Wang CM, He XQ. Canonical exact solution for Levy-plates on two parameter foundation using Green’s functions. Eng Struct. 2000;22:364–78.

    Article  Google Scholar 

  38. Huang ZY, Lu CF, Chen WQ. Benchmark solutions for functionally graded thick plates resting on Winkler-Pasternak elastic foundations. Compos Struct. 2008;85:95–104.

    Article  Google Scholar 

  39. Buczkowski R, Torbacki W. Finite element modeling of thick plates on two-parameter elastic foundation. Int J Numer Anal Methods Geomech. 2001;25:1409–27.

    Article  MATH  Google Scholar 

  40. Zhou D, Cheung YK, Lo SH, Au FTK. Three-dimensional vibration analysis of rectangular thick plates on Pasternak foundations. Int J Numer Methods Eng. 2004;59:1313–34.

    Article  MATH  Google Scholar 

  41. Yaghoobi H, Fereidoon A. Mechanical and thermal buckling analysis of functionally graded plates resting on elastic foundations: an assessment of a simple refined nth-order shear deformation theory. Compos Part B Eng. 2014;62:54–64.

    Article  Google Scholar 

  42. Thai HT, Choi DH. A refined plate theory for functionally graded plates resting on elastic foundation. Compos Sci Technol. 2011;71:18501858.

    Article  Google Scholar 

  43. Thai HT, Kim SE. Closed-form solution for bucking analysis of thick functionally graded plates on elastic foundation. Int J Mech Sci. 2013;75:34–44.

    Article  Google Scholar 

  44. Zenkour AM, Allam MNM, Radwan AF. Bending of cross-ply laminated plates resting on elastic foundations under thermo-mechanical loading. Int J Mech Mater Des. 2013;9:239–51.

    Article  Google Scholar 

  45. Mashat DS, Zenkour AM, Radwan AF. A quasi 3-D higher-order plate theory for bending of FG plates resting on elastic foundations under hygro-thermo-mechanical loads with porosity. Eur J Mech A Solids. 2020;82:103985.

    Article  MathSciNet  MATH  Google Scholar 

  46. Reddy JN, Cheng ZQ. Three-dimensional thermomechanical deformations of functionally graded rectangular plates. Eur J Mech A Solids. 2001;20:841–55.

    Article  MATH  Google Scholar 

  47. Reddy JN. Analysis of functionally graded plates. Int J Numer Methods Eng. 2000;47:663–84.

    Article  MATH  Google Scholar 

  48. Kobayashi H, Sonoda K. Rectangular Mindlin plates on elastic foundations. Int J Mech Sci. 1989;31:679–92.

    Article  MATH  Google Scholar 

  49. Thai HT, Choi DH. A simple refined theory for bending, buckling, and vibration of thick plates resting on elastic foundation. Int J Mech Sci. 2013;73:40–52.

    Article  Google Scholar 

  50. Han JB, Liew KM. Numerical differential quadrature method for Reissner/Mindlin plates on two-parameter foundations. Int J Mech Sci. 1997;39:977–89.

    Article  MATH  Google Scholar 

  51. Benyoucef S, Mechab I, Tounsi A, Fekrar A, Atmane HA, Bedia EAA. Bending of thick functionally graded plates resting on Winkler-Pasternak elastic foundations. Mech Compos Mater. 2010;46:425–34.

    Article  Google Scholar 

  52. Carrera E, Brischetto S, Cinefra M, Soave M. Effects of thickness stretching in functionally graded plates and shells. Compos Part B. 2011;42:123–33.

    Article  Google Scholar 

  53. Neves AMA, Ferreira AJM, Carrera E, Roque CMC, Cinefra M, Jorge RMN, Soares CMM. Bending of FGM plates by a sinusoidal plate formulation and collocation with radial basis functions. Mech Res Commun. 2011;38:368–71.

    Article  MATH  Google Scholar 

  54. Carrera E, Brischetto S, Robaldo A. Variable kinematic model for the analysis of functionally graded material plates. AIAA J. 2008;46:194–203.

    Article  Google Scholar 

  55. Zenkour AM. The refined sinusoidal theory for FGM plates on elastic foundations. Int J Mech Sci. 2009;51:869–80.

    Article  Google Scholar 

  56. Thai HT, Choi DH. A refined plate theory for functionally graded plates resting on elastic foundation. Compos Sci Technol. 2011;71:1850–8.

    Article  Google Scholar 

  57. Yaghoobi H, Fereidoon A. Mechanical and thermal buckling analysis of functionally graded plates resting on elastic foundations: an assessment of a simple refined nth-order shear deformation theory. Compos B. 2014;62:54–64.

    Article  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not for profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Zenkour.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Ethical statement

This research was done according to ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The elements \({D}_{ij}={D}_{ji}\) and \({A}_{ij}\) presented in Eq. (12) are given by:

$$\left\{{D}_{11},{D}_{13},{D}_{15}\right\}={\int }_{-h/2}^{h/2}{Q}_{11}\left\{1,z,f\left(z\right)\right\}\mathrm{d}z,$$
$$\left\{{D}_{12},{D}_{14},{D}_{16}\right\}={\int }_{-h/2}^{h/2}{Q}_{12}\left\{1,z,f\left(z\right)\right\}\mathrm{d}z,$$
$$\left\{{D}_{22},{D}_{24},{D}_{26}\right\}={\int }_{-h/2}^{h/2}{Q}_{22}\left\{1,z,f\left(z\right)\right\}\mathrm{d}z,$$
$$\left\{{D}_{44},{D}_{45},{D}_{46}\right\}={\int }_{-h/2}^{h/2}z\left\{z{Q}_{22},f\left(z\right){Q}_{12},f\left(z\right){Q}_{22}\right\}\mathrm{d}z,$$
$$\left\{{D}_{33},{D}_{35},{D}_{34},{D}_{36}\right\}={\int }_{-h/2}^{h/2}z\left\{z{Q}_{11},f\left(z\right){Q}_{11},z{Q}_{12},f\left(z\right){Q}_{12}\right\}\mathrm{d}z,$$
$$\left\{{D}_{55},{D}_{56},{D}_{66}\right\}={\int }_{-h/2}^{h/2}{\left[f\left(z\right)\right]}^{2}\left\{{Q}_{11},{Q}_{12},{Q}_{22}\right\}\mathrm{d}z,$$
$$\left\{{D}_{23},{D}_{25}\right\}={\int }_{-h/2}^{h/2}{Q}_{12}\left\{z,f\left(z\right)\right\}\mathrm{d}z,$$
$$\left\{{A}_{11},{A}_{12},{A}_{13}\right\}={\int }_{-h/2}^{h/2}{Q}_{66}\left\{1,z,f\left(z\right)\right\}\mathrm{d}z,$$
$$\left\{{A}_{22},{A}_{23},{A}_{33}\right\}={\int }_{-h/2}^{h/2}{Q}_{66}\left\{{z}^{2},zf\left(z\right),{\left[f\left(z\right)\right]}^{2}\right\}\text{d}z,$$
$$\left\{{A}_{44},{A}_{55}\right\}={\int }_{-h/2}^{h/2}{\left[1-{f}^{{^{\prime}}}\left(z\right)\right]}^{2}\left\{{Q}_{55},{Q}_{44}\right\}\text{d}z.$$

Appendix B

The elements \({p}_{ij}={p}_{ji}\) presented in Eq. (16) are given by:

$${p}_{11}={D}_{11}{\partial }_{xx}^{2}+{A}_{11}{\partial }_{yy}^{2},$$
$${p}_{12}=\left({D}_{12}+{A}_{11}\right){\partial }_{yx}^{2},$$
$${p}_{13}=-[{D}_{13}{\partial }_{xx}^{2}+\left({D}_{14}+2{A}_{12}\right){\partial }_{yy}^{2}]{\partial }_{x},$$
$${p}_{14}=-[{D}_{15}{\partial }_{xx}^{2}+\left({D}_{16}+2{A}_{13}\right){\partial }_{yy}^{2}]{\partial }_{x},$$
$${p}_{22}={A}_{11}{\partial }_{xx}^{2}+{D}_{22}{\partial }_{yy}^{2},$$
$${p}_{23}=-[{D}_{24}{\partial }_{yy}^{2}+\left({D}_{23}+2{A}_{12}\right){\partial }_{xx}^{2}]{\partial }_{y},$$
$${p}_{24}=-[{D}_{26}{\partial }_{yy}^{2}+\left({D}_{25}+2{A}_{13}\right){\partial }_{xx}^{2}]{\partial }_{y},$$
$${p}_{33}=\left[{D}_{33}{\partial }_{xx}^{2}+2\left({D}_{34}+2{A}_{22}\right){\partial }_{yy}^{2}-{K}_{P}+{\mathcal{R}}_{11}\right]{\partial }_{xx}^{2}+\left({D}_{33}{\partial }_{yy}^{2}-{K}_{P}+{\mathcal{R}}_{22}\right){\partial }_{yy}^{2}+{K}_{W},$$
$${p}_{34}=-\left[{D}_{46}{\partial }_{yy}^{2}+\left({D}_{36}+{D}_{45}+4{A}_{23}\right){\partial }_{xx}^{2}+{K}_{P}+{\mathcal{R}}_{22}\right]{\partial }_{yy}^{2}-\left({D}_{33}{\partial }_{xx}^{2}+{K}_{P}+{\mathcal{R}}_{22}\right){\partial }_{xx}^{2}-{K}_{W},$$
$${p}_{44}=\left[{D}_{55}{\partial }_{xx}^{2}+2\left({D}_{56}+2{A}_{33}\right){\partial }_{yy}^{2}-{A}_{44}-{K}_{P}+{\mathcal{R}}_{11}\right]{\partial }_{xx}^{2}$$
$$+\left[{D}_{66}{\partial }_{yy}^{2}-{A}_{55}-{K}_{P}+{\mathcal{R}}_{22}\right]{\partial }_{yy}^{2}+{K}_{W}.$$

Appendix C

The elements \({P}_{ij}={P}_{ji}\) and \({e}_{ji}^{\Theta }\) presented in Eqs. (22) and (24) are given by:

$${P}_{11}=-{D}_{11}{\lambda }_{k}^{2}-{A}_{11}{\mu }_{l}^{2},$$
$${P}_{12}=-\left({D}_{12}+{A}_{11}\right){\lambda }_{k}{\mu }_{l},$$
$${P}_{13}=[{D}_{13}{\lambda }_{k}^{2}+\left({D}_{14}+2{A}_{12}\right){\mu }_{l}^{2}]{\lambda }_{k},$$
$${P}_{14}=[{D}_{15}{\lambda }_{k}^{2}+\left({D}_{16}+2{A}_{13}\right){\mu }_{l}^{2}]{\lambda }_{k},$$
$${P}_{22}=-{A}_{11}{\lambda }_{k}^{2}-{D}_{22}{\mu }_{l}^{2},$$
$${P}_{23}=[{D}_{24}{\mu }_{l}^{2}+\left({D}_{23}+2{A}_{12}\right){\lambda }_{k}^{2}]{\mu }_{l},$$
$${P}_{24}=[{D}_{26}{\mu }_{l}^{2}+\left({D}_{25}+2{A}_{13}\right){\lambda }_{k}^{2}]{\mu }_{l},$$
$${P}_{33}=-\left[{D}_{33}{\lambda }_{k}^{2}+2\left({D}_{34}+2{A}_{22}\right){\mu }_{l}^{2}+{K}_{P}+{\mathcal{R}}_{11}\right]{\lambda }_{k}^{2}-\left({D}_{33}{\mu }_{l}^{2}+{K}_{P}+{\mathcal{R}}_{22}\right){\mu }_{l}^{2}-{K}_{W},$$
$${P}_{34}=-\left[{D}_{46}{\mu }_{l}^{2}+\left({D}_{36}+{D}_{45}+4{A}_{23}\right){\lambda }_{k}^{2}+{K}_{P}+{\mathcal{R}}_{22}\right]{\mu }_{l}^{2}-\left({D}_{33}{\lambda }_{k}^{2}+{K}_{P}+{\mathcal{R}}_{22}\right){\lambda }_{k}^{2}-{K}_{W},$$
$${P}_{44}=-\left[{D}_{55}{\lambda }_{k}^{2}+2\left({D}_{56}+2{A}_{33}\right){\mu }_{l}^{2}+{A}_{44}+{K}_{P}+{\mathcal{R}}_{11}\right]{\lambda }_{k}^{2}-\left[{D}_{66}{\mu }_{l}^{2}+{A}_{55}+{K}_{P}+{\mathcal{R}}_{22}\right]{\mu }_{l}^{2}+{K}_{W},$$
$${e}_{1i}^{\Theta }={\int }_{-h/2}^{h/2}\left({Q}_{11}+{Q}_{12}\right){\eta }_{i}\xi \left(z\right)\mathrm{d}z,$$
$${e}_{2i}^{\Theta }={\int }_{-h/2}^{h/2}\left({Q}_{12}+{Q}_{22}\right){\eta }_{i}\xi \left(z\right)\mathrm{d}z,$$
$${e}_{3i}^{\Theta }={\int }_{-h/2}^{h/2}z\left({Q}_{11}+{Q}_{12}\right){\eta }_{i}\xi \left(z\right)\mathrm{d}z,$$
$${e}_{4i}^{\Theta }={\int }_{-h/2}^{h/2}z\left({Q}_{12}+{Q}_{22}\right){\eta }_{i}\xi \left(z\right)\mathrm{d}z,$$
$${e}_{5i}^{\Theta }={\int }_{-h/2}^{h/2}f\left(z\right)\left({Q}_{11}+{Q}_{12}\right){\eta }_{i}\xi \left(z\right)\mathrm{d}z,$$
$${e}_{6i}^{\Theta }={\int }_{-\frac{h}{2}}^\frac{h}{2}f\left(z\right)\left({Q}_{12}+{Q}_{22}\right){\eta }_{i}\xi \left(z\right)\mathrm{d}z, i=\mathrm{1,2},3,$$
$${\eta }_{1}=1, {\eta }_{2}=\frac{z}{h}, {\eta }_{3}=\frac{f\left(z\right)}{h}, \Theta =\left\{\begin{array}{c}C \mathrm{if} \xi =\beta ,\\ T \mathrm{if} \xi =\alpha .\end{array}\right.$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zenkour, A.M., Radwan, A.F. Bending and buckling analysis of FGM plates resting on elastic foundations in hygrothermal environment. Archiv.Civ.Mech.Eng 20, 112 (2020). https://doi.org/10.1007/s43452-020-00116-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-020-00116-z

Keyword

Navigation