Skip to main content
Log in

Implementation of nonadiabatic holonomic quantum computation via two blockaded Rydberg atoms

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Nonadiabatic holonomic quantum computing has received great attention due to its advantages of avoiding long-term evolution of the system and maintaining the robustness of holonomic gates to control errors. In this paper, we study a scheme for implementing nonadiabatic holonomic computation using two blockaded Rydberg atoms. With the presence of the Rydberg blockade effect, we realized controlled-phase gates, which play an irreplaceable role in quantum computation and quantum information processing. Therefore, the current scheme may open up new prospects for the design of new types of effective Rydberg quantum gate devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon request by contacting with the corresponding author.]

References

  1. E.T. Campbell, B.M. Terhal, C. Vuillot, Roads towards fault-tolerant universal quantum computation. Nature 549, 172–179 (2007)

    Article  ADS  Google Scholar 

  2. T. Albash, D.A. Lidar, Adiabatic quantum computation. Rev. Mod. Phys. 90, 015002 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  3. D. Loss, D.P. DiVincenzo, Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998)

    Article  ADS  Google Scholar 

  4. J. Borregaard, A.S. Sorensen, J.I. Cirac, M.D. Lukin, Efficient quantum computation in a network with probabilistic gates and logical encoding. Phys. Rev. A 95, 042312 (2017)

    Article  ADS  Google Scholar 

  5. D.A. Lidar, I.L. Chuang, K.B. Whaley, Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594 (1998)

    Article  ADS  Google Scholar 

  6. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. E. Sjöqvist, A.K. Pati, A. Ekert, J.S. Anandan, M. Ericsson, D.K.L. Oi, V. Vedral, Geometric phases for mixed states in interferometry. Phys. Rev. Lett. 85, 2845 (2000)

    Article  ADS  Google Scholar 

  8. G. Falci, R. Fazio, G.M. Palma, J. Siewert, V. Vedral, Detection of geometric phases in superconducting nanocircuits. Nature (London) 407, 355–358 (2000)

    Article  ADS  Google Scholar 

  9. S.L. Zhu, Z.D. Wang, Implementation of universal quantum gates based on nonadiabatic geometric phases. Phys. Rev. Lett. 89, 097902 (2002)

    Article  ADS  Google Scholar 

  10. S.L. Zhu, Scaling of geometric phases close to the quantum phase transition in the spin chain. Phys. Rev. Lett. 96, 077206 (2006)

    Article  ADS  Google Scholar 

  11. V.A. Mousolou, E. Sjöqvist, Non-Abelian geometric phases in a system of coupled quantum bits. Phys. Rev. A 89, 022117 (2014)

    Article  ADS  Google Scholar 

  12. L.S. Simeonov, N.V. Vitanov, Generation of non-Abelian geometric phases in degenerate atomic transitions. Phys. Rev. A 96, 032102 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  13. A.A. Abdumalikov Jr., J.M. Fink, K. Juliusson, M. Pechal, S. Berger, A. Wallraff, S. Filipp, Experimental realization of non-Abelian non-adiabatic geometric gates. Nature (London) 496, 482–485 (2013)

    Article  ADS  Google Scholar 

  14. G.F. Xu, G.L. Long, Universal nonadiabatic geometric gates in two-qubit decoherence-free subspaces. Sci. Rep. 4, 6814 (2014)

    Article  ADS  Google Scholar 

  15. Z.T. Liang, X.X. Yue, Q. Lv, Y.X. Du, W. Huang, H. Yan, S.L. Zhu, Proposal for implementing universal superadiabatic geometric quantum gates in nitrogen-vacancy centers. Phys. Rev. A 93, 040305(R) (2016)

    Article  ADS  Google Scholar 

  16. E. Sjöqvist, Nonadiabatic holonomic single-qubit gates in off-resonant \(\Lambda \) systems. Phys. Lett. A 380, 65–67 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. X.B. Wang, M. Keiji, Nonadiabatic conditional geometric phase shift with NMR. Phys. Rev. Lett. 87, 097901 (2001)

    Article  ADS  Google Scholar 

  18. S.L. Zhu, Z.D. Wang, Unconventional geometric quantum computation. Phys. Rev. Lett. 91, 187902 (2003)

    Article  ADS  Google Scholar 

  19. Z.S. Wang, C.F. Wu, X.L. Feng, L.C. Kwek, C.H. Lai, C.H. Oh, V. Vedral, Nonadiabatic geometric quantum computation. Phys. Rev. A 76, 044303 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  20. E. Sjöqvist, D.M. Tong, L.M. Andersson, B. Hessmo, M. Johansson, K. Singh, Non-adiabatic holonomic quantum computation. New J. Phys. 14, 103035 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. J. Zhang, T.H. Kyaw, D.M. Tong, E. Sjöqvist, L.C. Kwek, Fast non-Abelian geometric gates via transitionless quantum driving. Sci. Rep. 5, 18414 (2015)

    Article  ADS  Google Scholar 

  22. H. Li, Y. Liu, G.L. Long, Experimental realization of single-shot nonadiabatic holonomic gates in nuclear spins. Sci. China Phys. Mech. Astron. 60, 080311 (2017)

    Article  ADS  Google Scholar 

  23. C. Zu, W.B. Wang, L. He, W.G. Zhang, C.Y. Dai, F. Wang, L.M. Duan, Experimental realization of universal geometric quantum gates with solid-state spins. Nature 519(7520), 72 (2014)

    Article  ADS  Google Scholar 

  24. S. Arroyo-Camejo, A. Lazariev, S.W. Hell, G. Balasubramanian, Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin. Nat. Commun. 5, 4870 (2014)

    Article  ADS  Google Scholar 

  25. B.J. Liu, Z.H. Huang, Z.Y. Xue, X.D. Zhang, Superadiabatic holonomic quantum computation in cavity QED. Phys. Rev. A 95, 062308 (2017)

    Article  ADS  Google Scholar 

  26. Z.Y. Xue, J. Zhou, Y.M. Chu, Y. Hu, Nonadiabatic holonomic quantum computation with all-resonant control. Phys. Rev. A 94, 022331 (2016)

    Article  ADS  Google Scholar 

  27. M. Saffman, T.G. Walker, K. Molmer, Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313 (2010)

    Article  ADS  Google Scholar 

  28. E. Urban, T.A. Johnson, T. Henage, L. Isenhower, D.D. Yavuz, T.G. Walker, M. Saffman, Observation of Rydberg blockade between two atoms. Nat. Phys. 5, 110–114 (2009)

    Article  Google Scholar 

  29. Y.H. Kang, Y.H. Chen, Z.C. Shi, B.H. Huang, J. Song, Y. Xia, Nonadiabatic holonomic quantum computation using Rydberg blockade. Phys. Rev. A 97, 042336 (2018)

    Article  ADS  Google Scholar 

  30. H.Z. Wu, Z.B. Yang, S.B. Zheng, Implementation of a multiqubit quantum phase gate in a neutral atomic ensemble via the asymmetric Rydberg blockade. Phys. Rev. A 82, 034307 (2010)

    Article  ADS  Google Scholar 

  31. D.D. Bhaktavatsala Rao, K. Molmer, Robust Rydberg-interaction gates with adiabatic passage. Phys. Rev. A 89, 030301(R) (2014)

    Article  Google Scholar 

  32. X. Chen, G.W. Lin, H. Xie, X. Shang, M.Y. Ye, X.M. Lin, Fast creation of a three-atom singlet state with a dissipative mechanism and Rydberg blockade. Phys. Rev. A 98, 042335 (2018)

    Article  ADS  Google Scholar 

  33. M.M. Muller, M. Murphy, S. Montangero, T. Calarco, Implementation of an experimentally feasible controlled-phase gate on two blockaded Rydberg atoms. Phys. Rev. A 89, 032334 (2014)

    Article  ADS  Google Scholar 

  34. P.Z. Zhao, X.D. Cui, G.F. Xu, E. Sjoqvist, D.M. Tong, Rydberg-atom-based scheme of nonadiabatic geometric quantum computation. Phys. Rev. A 96, 052316 (2017)

    Article  ADS  Google Scholar 

  35. P.Z. Zhao, G.F. Xu, D.M. Tong, Nonadiabatic holonomic multiqubit controlled gates. Phys. Rev. A 99, 052309 (2019)

    Article  ADS  Google Scholar 

  36. P.Z. Zhao, X. Wu, T.H. Xing, G.F. Xu, D.M. Tong, Nonadiabatic holonomic quantum computation with Rydberg superatoms. Phys. Rev. A 98, 032313 (2018)

    Article  ADS  Google Scholar 

  37. X.L. Feng, Z.S. Wang, C.F. Wu, L.C. Kwek, C.H. Lai, C.H. Oh, Scheme for unconventional geometric quantum computation in cavity QED. Phys. Rev. A 75, 052312 (2007)

    Article  ADS  Google Scholar 

  38. Z.T. Liang, Y.X. Du, W. Huang, Z.Y. Xue, H. Yan, Nonadiabatic holonomic quantum computation in decoherence-free subspaces with trapped ions. Phys. Rev. A 89, 062312 (2014)

    Article  ADS  Google Scholar 

  39. M. Saffman, T.G. Walker, Analysis of a quantum logic device based on dipole-dipole interactions of optically trapped Rydberg atoms. Phys. Rev. A 72, 022347 (2005)

    Article  ADS  Google Scholar 

  40. D.F.V. James, J. Jerke, Effective Hamiltonian theory and its applications in quantum information Can. J. Phys. 85, 625–632 (2007)

    ADS  Google Scholar 

  41. D. Møller, L.B. Madsen, K. Mølmer, Quantum gates and multiparticle entanglement by Rydberg excitation blockade and adiabatic passage. Phys. Rev. Lett. 100, 170504 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China under Grant No. 11674089 and the Project of Introduction and Cultivation for Young Innovative Talents in Colleges and Universities of Shandong Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-An Yan.

Appendix A: Derivation of the effective Hamiltonian

Appendix A: Derivation of the effective Hamiltonian

According to the Hamiltonian shown in Eq. (2), the system evolves in Hilbert space spanned by:\(\vert {\varphi _{1}}\rangle =\vert {BB}\rangle _{12}\), \(\vert {\varphi _{2}}\rangle =\vert {BD}\rangle _{12}\), \(\vert {\varphi _{3}}\rangle =\vert {Br}\rangle _{12}\), \(\vert {\varphi _{4}}\rangle =\vert {DB}\rangle _{12}\), \(\vert {\varphi _{5}}\rangle =\vert {DD}\rangle _{12}\), \(\vert {\varphi _{6}}\rangle =\vert {Dr}\rangle _{12}\), \(\vert {\varphi _{7}}\rangle =\vert {rB}\rangle _{12}\), \(\vert {\varphi _{8}}\rangle =\vert {rD}\rangle _{12}\), \(\vert {\varphi _{9}}\rangle =\vert {rr}\rangle _{12}\), Thus, the Hamiltonian shown in Eq. (2) can be rewritten as

$$\begin{aligned} H_{I}(t)&=(\Omega _{1}(t)e^{i\Delta t}+\Omega _{1}(t)e^{-i\Delta t})(\vert {\varphi _{1}}\rangle \langle {\varphi _{7}}\vert +\vert {\varphi _{2}}\rangle \langle {\varphi _{8}}\vert \nonumber \\&\quad +\vert {\varphi _{3}}\rangle \langle {\varphi _{9}}\vert )+(\Omega _{2}(t)e^{i\Delta t}+\Omega _{2}(t)e^{-i\Delta t})(\vert {\varphi _{1}}\rangle \langle {\varphi _{3}}\vert \nonumber \\&\quad +\vert {\varphi _{4}}\rangle \langle {\varphi _{7}}\vert +\vert {\varphi _{7}}\rangle \langle {\varphi _{9}}\vert )+h.c+V\vert {rr}\rangle _{12}\langle {rr}\vert . \end{aligned}$$
(6)

By introducing a picture transformation with unitary operator \(U(t)=e^{(-iV\vert {rr}\rangle _{12}\langle {rr}\vert t)}\) [29], one can move to another picture where the Hamiltonian is

$$\begin{aligned} \begin{aligned} H^{'}_{I}(t)&=U^{\dagger }(t)H_{I}(t)U(t)-iU^{\dagger }(t){\dot{U}}(t)\\&=\sum ^{2}_{N=1}P^{\dagger }_{N}(t)e^{i\Delta t}+P_{N}(t)e^{-i\Delta t}.\\ \end{aligned} \end{aligned}$$
(7)

Here,

$$\begin{aligned} P_{1}= & {} \Omega _{1}(t)(\vert {\varphi _{7}}\rangle \langle {\varphi _{1}}\vert +\vert {\varphi _{8}}\rangle \langle {\varphi _{2}}\vert +\vert {\varphi _{9}}\rangle \langle {\varphi _{3}}\vert )+h.c \end{aligned}$$
(8)
$$\begin{aligned} P_{2}= & {} \Omega _{2}(t)(\vert {\varphi _{3}}\rangle \langle {\varphi _{1}}\vert +\vert {\varphi _{7}}\rangle \langle {\varphi _{4}}\vert +\vert {\varphi _{9}}\rangle \langle {\varphi _{7}}\vert )+h.c. \end{aligned}$$
(9)

And we assume \(M_{1}=\Delta \) and \(M_{2}=\Delta +V\). According to Ref. [34, 40], we can get the mathematical expression of effective Hamiltonian

$$\begin{aligned} H_{\mathrm{eff}}(t)=\sum ^{2}_{m,N=1}\frac{1}{M^{'}_{mN}}[P^{\dagger }_{m}(t),P_{N}(t)]e^{i(M_{m}-M_{N})t}. \end{aligned}$$
(10)

Here, \(\frac{1}{M^{'}_{mN}}=\frac{1}{2}\left( \frac{1}{M_{m}}+\frac{1}{M_{N}}\right) \). Using the above calculation formula of effective Hamiltonian, we can get the simplified equation of effective Hamiltonian

$$\begin{aligned} H_{\mathrm{eff}}(t)&=\frac{2\Omega ^{2}_{1}(t)}{\Delta }(\vert {\varphi _{1}}\rangle \langle {\varphi _{7}}\vert +\vert {\varphi _{7}}\rangle \langle {\varphi _{1}}\vert +\vert {\varphi _{2}}\rangle \langle {\varphi _{8}}\vert \nonumber \\&\quad +\vert {\varphi _{8}}\rangle \langle {\varphi _{2}}\vert )+\frac{2\Omega ^{2}_{2}(t)}{\Delta }(\vert {\varphi _{1}}\rangle \langle {\varphi _{3}}\vert \nonumber \\&\quad +\vert {\varphi _{3}}\rangle \langle {\varphi _{1}}\vert +\vert {\varphi _{4}}\rangle \langle {\varphi _{6}}\vert +\vert {\varphi _{6}}\rangle \langle {\varphi _{4}}\vert ). \end{aligned}$$
(11)

Because \(\vert {\varphi _{1}}\rangle =\vert {BB}\rangle _{12}\), \(\vert {\varphi _{2}}\rangle =\vert {BD}\rangle _{12}\), \(\vert {\varphi _{3}}\rangle =\vert {Br}\rangle _{12}\), \(\vert {\varphi _{4}}\rangle =\vert {DB}\rangle _{12}\), \(\vert {\varphi _{5}}\rangle =\vert {DD}\rangle _{12}\), \(\vert {\varphi _{6}}\rangle =\vert {Dr}\rangle _{12}\), \(\vert {\varphi _{7}}\rangle =\vert {rB}\rangle _{12}\), \(\vert {\varphi _{8}}\rangle =\vert {rD}\rangle _{12}\), \(\vert {\varphi _{9}}\rangle =\vert {rr}\rangle _{12}\). Therefore, the effective Hamiltonian can also be written as

$$\begin{aligned} H_{\mathrm{eff}}(t)&=\frac{2\Omega ^{2}_{1}(t)}{\Delta }(\vert {rB}\rangle _{12}\langle {BB}\vert +\vert {BD}\rangle _{12}\langle {rD}\vert )\nonumber \\&\quad +\frac{2\Omega ^{2}_{2}(t)}{\Delta }(\vert {Br}\rangle _{12}\langle {BB}\vert +\vert {DB}\rangle _{12}\langle {Dr}\vert )+H.c. \end{aligned}$$
(12)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, GA., Lu, H. & Liu, Y. Implementation of nonadiabatic holonomic quantum computation via two blockaded Rydberg atoms. Eur. Phys. J. Plus 136, 231 (2021). https://doi.org/10.1140/epjp/s13360-021-01222-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01222-4

Navigation