Skip to main content
Log in

Nonlinearity-managed lump waves in a spatial symmetric HSI model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We aim at seeking nonlinearity-managed lump waves in a spatial symmetric HSI model. Nonlinear terms play an important role in formulating such lump waves with the dispersion terms in the nonlinear model. Based on an associated Hirota bilinear form, an ansatz on quadratic function solutions is adopted for the corresponding Hirota bilinear equation, and symbolic computation with Maple is made to construct the required lump waves. A few of characteristic properties of the obtained lump waves are determined and some concluding remarks are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The data used to support the findings of this study are included within the article.]

References

  1. J.S. Russell, Report on waves (Liverpool, 1837). Report of the 7th meeting of the British Association for the Advancement of Science. John Murray, London; pp. 417–496 (1838)

  2. J.S. Russell, Report on waves (York, 1844). Report of the 14th meeting of the British Association for the Advancement of Science. John Murray, London; pp. 311–390 (1845)

  3. L.F. Mollenauer, R.H. Stolen, J.P. Gordon, Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett. 45, 1095–1098 (1980)

    Article  ADS  Google Scholar 

  4. A. Hasegawa, Optical Solitons in Fibers, Second enlarged edition (Springer-Verlag, AT & T Bell Laboratories, Berlin, Heidelberg, 1989/1990)

  5. M.J. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transform (SIAM, Philadelphia, 1981)

    Book  MATH  Google Scholar 

  6. R. Hirota, The Direct Method in Soliton Theory (Cambridge University Press, New York, 2004)

    Book  MATH  Google Scholar 

  7. V.E. Zakharov, A.B. Shabat, A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I. Funct. Anal. Appl. 8, 226–235 (1974)

    Article  MATH  Google Scholar 

  8. M.J. Ablowitz, A.C. Newell, The decay of the continuous spectrum for solutions of the Korteweg-de Vries equation. J. Math. Phys. 14, 1277–1284 (1973)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192–1194 (1971)

    Article  ADS  MATH  Google Scholar 

  10. W.X. Ma, \(N\)-soliton solutions and the Hirota conditions in (2+1)-dimensions. Opt. Quantum Electron. 52, 511 (2020)

    Article  Google Scholar 

  11. W.X. Ma, Y. Zhou, Lump solutions to nonlinear partial differential equations via Hirota bilinear forms. J. Differ. Equ. 264, 2633–2659 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. W. Tan, H.P. Dai, Z.D. Dai, W.Y. Zhong, Emergence and space-time structure of lump solution to the (2+1)-dimensional generalized KP equation. Pramana J. Phys. 89, 77 (2017)

    Article  ADS  Google Scholar 

  13. J. Satsuma, M.J. Ablowitz, Two-dimensional lumps in nonlinear dispersive systems. J. Math. Phys. 20, 1496–1503 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. W.X. Ma, Lump solutions to the Kadomtsev–Petviashvili equation. Phys. Lett. A 379, 1975–1978 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. S.V. Manakov, V.E. Zakharov, L.A. Bordag, V.B. Matveev, Two-dimensional solitons of the Kadomtsev–Petviashvili equation and their interaction. Phys. Lett. A 63, 205–206 (1977)

    Article  ADS  Google Scholar 

  16. D.J. Kaup, The lump solutions and the Bäcklund transformation for the three-dimensional three-wave resonant interaction. J. Math. Phys. 22, 1176–1181 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. C.R. Gilson, J.J.C. Nimmo, Lump solutions of the BKP equation. Phys. Lett. A 147, 472–476 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  18. J.Y. Yang, W.X. Ma, lump solutions of the BKP equation by symbolic computation. Int. J. Mod. Phys. B 30, 1640028 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. K. Imai, Dromion and lump solutions of the Ishimori-I equation. Prog. Theor. Phys. 98, 1013–1023 (1997)

    Article  ADS  Google Scholar 

  20. X.L. Yong, W.X. Ma, Y.H. Huang, Y. Liu, lump solutions to the Kadomtsev–Petviashvili I equation with a self-consistent source. Comput. Math. Appl. 75, 3414–3419 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. W.X. Ma, Z.Y. Qin, X. Lü, Lump solutions to dimensionally reduced p-gKP and p-gBKP equations. Nonlinear Dyn. 84, 923–931 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. W.X. Ma, X.L. Yong, H.Q. Zhang, Diversity of interaction solutions to the (2+1)-dimensional Ito equation. Comput. Math. Appl. 75, 289–295 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. W.X. Ma, A search for lump solutions to a combined fourth-order nonlinear PDE in (2+1)-dimensions. J. Appl. Anal. Comput. 9, 1319–1332 (2019)

    MathSciNet  Google Scholar 

  24. W.X. Ma, Lump and interaction solutions to linear PDEs in (2+1)-dimensions via symbolic computation. Mod. Phys. Lett. B 33, 1950457 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  25. W.X. Ma, Lump and interaction solutions of linear PDEs in (3+1)-dimensions. East Asian J. Appl. Math. 9, 185–194 (2019)

    Article  MathSciNet  Google Scholar 

  26. W.X. Ma, L.Q. Zhang, Lump solutions with higher-order rational dispersion relations. Pramana J. Phys. 94, 43 (2020)

    Article  ADS  Google Scholar 

  27. X. Lü, W.X. Ma, Y. Zhou, C.M. Khalique, Rational solutions to an extended Kadomtsev–Petviashvili like equation with symbolic computation. Comput. Math. Appl. 71, 1560–1567 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. W.X. Ma, Interaction solutions to the Hirota–Satsuma–Ito equation in (2+1)-dimensions. Front. Math. China 14, 619–629 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. S. Manukure, Y. Zhou, W.X. Ma, Lump solutions to a (2+1)-dimensional extended KP equation. Comput. Math. Appl. 75, 2414–2419 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. B. Ren, W.X. Ma, J. Yu, Characteristics and interactions of solitary and lump waves of a (2+1)-dimensional coupled nonlinear partial differential equation. Nonlinear Dyn. 96, 717–727 (2019)

    Article  MATH  Google Scholar 

  31. J.P. Yu, Y.L. Sun, Study of lump solutions to dimensionally reduced generalized KP equations. Nonlinear Dyn. 87, 2755–2763 (2017)

    Article  MathSciNet  Google Scholar 

  32. W.X. Ma, Y. Zhang, Y.N. Tang, Symbolic computation of lump solutions to a combined equation involving three types of nonlinear terms. East Asian J. Appl. Math. 10, 732–745 (2020)

    Article  MathSciNet  Google Scholar 

  33. W.X. Ma, Lump-type solutions to the (3+1)-dimensional Jimbo–Miwa equation. Int. J. Nonlinear Sci. Numer. Simulat. 17, 355–359 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Y. Sun, B. Tian, X.Y. Xie, J. Chai, H.M. Yin, Rogue waves and lump solitons for a (3+1)-dimensional B-type Kadomtsev–Petviashvili equation in fluid dynamics. Waves Random Complex Media 28, 544–552 (2018)

  35. S. Batwa, W.X. Ma, A study of lump-type and interaction solutions to a (3+1)-dimensional Jimbo–Miwa-like equation. Comput. Math. Appl. 76, 1576–1582 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. T.C. Kofane, M. Fokou, A. Mohamadou, E. Yomba, Lump solutions and interaction phenomenon to the third-order nonlinear evolution equation. Eur. Phys. J. Plus 132, 465 (2017)

    Article  Google Scholar 

  37. S.J. Chen, Y.H. Yin, W.X. Ma, X. Lü, Abundant exact solutions and interaction phenomena of the (2+1)-dimensional YTSF equation. Anal. Math. Phys. 9, 2329–2344 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. J.Y. Yang, W.X. Ma, C.M. Khalique, Determining lump solutions for a combined soliton equation in (2+1)-dimensions. Eur. Phys. J. Plus 135, 494 (2020)

    Article  Google Scholar 

  39. O.A. Ilhan, J. Manafian, M. Shahriari, Lump wave solutions and the interaction phenomenon for a variable-coefficient Kadomtsev–Petviashvili equation. Comput. Math. Appl. 78, 2429–2448 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. X.X. Xu, A deformed reduced semi-discrete Kaup–Newell equation, the related integrable family and Darboux transformation. Appl. Math. Comput. 251, 275–283 (2015)

    MathSciNet  MATH  Google Scholar 

  41. W.X. Ma, Y. You, Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions. Trans. Am. Math. Soc. 357, 1753–1778 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  42. J.G. Liu, L. Zhou, Y. He, Multiple soliton solutions for the new (2+1)-dimensional Korteweg-de Vries equation by multiple exp-function method. Appl. Math. Lett. 80, 71–78 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. J. Manafian, Novel solitary wave solutions for the (3+1)-dimensional extended Jimbo–Miwa equations. Comput. Math. Appl. 76, 1246–1260 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  44. J. Manafian, O.A. Ilhan, A. Alizadeh, Periodic wave solutions and stability analysis for the KP-BBM equation with abundant novel interaction solutions. Phys. Scr. 95, 065203 (2020)

    Article  ADS  Google Scholar 

  45. W.X. Ma, Riemann–Hilbert problems and \(N\)-soliton solutions for a coupled mKdV system. J. Geom. Phys. 132, 45–54 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. X. Lü, W.X. Ma, S.T. Chen, C.M. Khalique, A note on rational solutions to a Hirota–Satsuma-like equation. Appl. Math. Lett. 58, 13–18 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  47. B. Dorizzi, B. Grammaticos, A. Ramani, P. Winternitz, Are all the equations of the Kadomtsev–Petviashvili hierarchy integrable? J. Math. Phys. 27, 2848–2852 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. W.X. Ma, W. Strampp, An explicit symmetry constraint for the Lax pairs and the adjoint Lax pairs of AKNS systems. Phys. Lett. A 185, 277–286 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. W.X. Ma, X.G. Geng, Bäcklund transformations of soliton systems from symmetry constraints. CRM Proc. Lect. Notes 29, 313–323 (2011)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The work was supported in part by National Natural Science Foundation of China (11975145 and 11972291), a project of Inner Mongolia University of Technology for developing a high performance research team (ZD202018) and the Natural Science Foundation for Colleges and Universities in Jiangsu Province (17KJB110020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Xiu Ma.

Ethics declarations

Conflicts of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, WX., Bai, Y. & Adjiri, A. Nonlinearity-managed lump waves in a spatial symmetric HSI model. Eur. Phys. J. Plus 136, 240 (2021). https://doi.org/10.1140/epjp/s13360-021-01212-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01212-6

Navigation