Skip to main content
Log in

Study of lump solutions to dimensionally reduced generalized KP equations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a new (\(3+1\))-dimensional generalized KP (gKP) equation is presented, and two classes of lump solutions, rationally localized in all directions in the space, to the dimensionally reduced cases in (\(2\,+\,1\))-dimensions are derived as well. The proposed method in this work is based on a Hirota bilinear differential equation, which implies that we can build the lump solutions to the presented reduced gKP equation from positive quadratic function solutions to the aforementioned bilinear equation. Moreover, there are totally six free parameters in the resulting lump solutions, so that we can get the sufficient and necessary conditions guaranteeing analyticity and rational localization of the solutions by using these six free parameters. In the meantime, two special cases are plotted as illustrative examples and some contour plots with different determinant values are given to show that the corresponding lump solution tends to zero when the determinant approaches zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hirota, R.: The direct method in soliton theory. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  2. Ma, W.X.: Generalized bilinear differential equations. Stud. Nonlinear Sci. 2, 140–144 (2011)

    Google Scholar 

  3. Müller, P., Garrett, C., Osborne, A.: Rogue waves. Oceanography 18, 66–75 (2005)

    Article  Google Scholar 

  4. Ma, W.X., You, Y.: Rational solutions of the Toda lattice equation in Casoratian form, Chaos, Solitons and Fractals, 22 (2004) 395-406 (MR 2005b:37178)

  5. Zhang, Y., Ma, W.X.: Rational solutions to a KdV-like equation. Appl. Math. Comput. 256(2015) 252C256

  6. Shi, C.G., Zhao, B.Z., Ma, W.X.: Exact rational solutions to a Boussinesq-like equation in (1+1)-dimensions. Appl. Math. Lett. 48, 170–176 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lü, X., Ma, W.X., Zhou, Y., Khalique, C.M.: Rational solutions to an extended Kadomtsev-Petviashvili-like equation with symbolic computation. Computers and Mathematics with Applications 71, 1560–1567 (2016)

    Article  MathSciNet  Google Scholar 

  8. Kharif, C., Pelinovsky, E., Slunyaev, A.: Rogue Waves in the Ocean. Advances in Geophysical and Environmental Mechanics and Mathematics , Springer-Verlag, Berlin (2009)

  9. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  10. Ma, W.X.: Complexiton solutions to the Korteweg–de Vries equation. Phys. Lett. A 301, 35–44 (2002). (MR2003h:35237)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ma, W.X., You, Y.: Solving the Korteweg–de Vries equation by its bilinear form: Wronskian solutions. Trans. Am. Math. Soc. 357, 1753–1778 (2005). (MR 2005k:37156)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ma, W.X.: Comment on the (3+1)-dimensional Kadomtsev–Petviashvili equations. Commun. Nonlinear Sci. Numer. Simul. 16, 2663–2666 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Khalfallah, M.: New exact traveling wave solutions of the (3 + 1) dimensional Kadomtsev–Petviashvili (KP) equation. Commun. Nonlinear Sci. Numer. Simul. 14, 1169–1175 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Manakov, S.V., Zakharov, V.E., Bordag, L.A., Matveev, V.B.: Two-dimensional solitons of the Kadomtsev–Petviashvili equation and their interaction. Phys. Lett. A 63, 205–206 (1977)

    Article  Google Scholar 

  15. Kaup, D.J.: The lump solutions and the Bäklund transformation for the three-dimensional three-wave resonant interaction. J. Math. Phys. 22, 1176–1181 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gilson, C.R., Nimmo, J.J.C.: Lump solutions of the BKP equation. Phys. Lett. A 147, 472–476 (1990)

    Article  MathSciNet  Google Scholar 

  17. Satsuma, J., Ablowitz, M.J.: Two-dimensional lumps in nonlinear dispersive systems. J. Math. Phys. 20, 1496–1503 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ma, W.X.: Trilinear equations, Bell polynomials, and resonant solutions. Front. Math. China 8, 1139–1156 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ebadi, G., Fard, N.Y., Bhrawy, A.H., Kumar, S., Triki, H., Yildirim, A., Biswas, A.: solitons and other solutions to the (3 + 1)-dimensional extended kadomtsev-petviashvili equation with power law nonlinearity. Rom. Rep. Phys. 65, 27–62 (2013)

    Google Scholar 

  20. Zhang, Y.F., Ma, W.X.: A study on rational solutions to a KP-like equation. Z. Naturforsch 70, 263–268 (2015)

    Google Scholar 

  21. Johnson, R.S., Thompson, S.: A solution of the inverse scattering problem for the Kadomtsev–Petviashvili equation by the method of separation of variables. Phys. Lett. A 66, 279–281 (1978)

    Article  MathSciNet  Google Scholar 

  22. Ma, W.X.: Wronskians, generalized Wronskians and solutions to the Korteweg–deVries equation. Chaos Solitons Fractals 19, 163–170 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ma, W.X.: Lump solutions to the Kadomtsev–Petviashvili equation. Phys. Lett. A 379(36), 1975–1978 (2015)

    Article  MathSciNet  Google Scholar 

  24. Ma, W.X., Li, C.X., He, J.S.: A second Wronskian formulation of the Boussinesq equation. Nonlinear Anal. TMA 70, 4245–4258 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ma, W.X.: The Casoratian technique for integrable lattice equations. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 16(Differential Equations and Dynamical Systems, suppl. S1), 201-207 (2009)

  26. Wang, D.S., Zhang, H.Q.: Further improved F-expansion method and new exact solutions of Konopelchenko–Dubrovsky equation. Chaos Solitons Fractals 25, 601 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, D.S., Hu, X.H., Hu, J., Liu, W.M.: Quantized quasi-two-dimensional Bose–Einstein condensates with spatially modulated nonlinearity. Phys. Rev. A 81, 025604 (2010)

    Article  Google Scholar 

  28. El-Tantawy, S.A., Moslem, W.M.: Nonlinear structures of the Korteweg–de Vries and modified Korteweg–de Vries equations in non-Maxwellian electron-positron-ion plasma: solitons collision and rogue waves. Phys. Plasma 21, 052112 (2014)

    Article  Google Scholar 

  29. Adem, A.R., Khalique, C.M., Biswas, A.: Math. Methods Appl. Sci. 34, 532–543 (2011)

    Article  MathSciNet  Google Scholar 

  30. Biswas, A., Yildirim, A., Hayat, T., Aldossary, O.M., Sassaman, R.: Proc. Rom. Acad. Series A 13, 32–41 (2012)

    Google Scholar 

  31. Girgis, L., Milovic, D., Konar, S., Yildirim, A., Jafari, H., Biswas, A.: Rom. Rep. Phys. 64, 663–671 (2012)

    Google Scholar 

  32. Johnpillai, A.G., Yildirim, A., Biswas, A.: Rom. J. Phys. 57, 545–554 (2012)

    Google Scholar 

  33. Kumar, S., Singh, K., Gupta, R.K.: Commun. Nonlinear Sci. Numer. Simul. 17, 1529–1541 (2012)

    Article  MathSciNet  Google Scholar 

  34. Singh, K., Gupta, R.K., Kumar, S.: Appl. Math. Comput. 217, 7021–7027 (2011)

    MathSciNet  Google Scholar 

  35. Salas, A., Kumar, S., Yildirim, A., Biswas, A.: Proceedings of the Romanian Academy: Series A, 14(2013)

  36. Triki, H., Yildirim, A., Hayat, T., Aldossart, O.M., Biswas, A.: Proc. Rom. Acad. Series A 13, 103–108 (2012)

    Google Scholar 

  37. Triki, H., Crutcher, S., Yildirim, A., Hayat, T., Aldossary, O.M., Biswas, A.: Rom. Rep. Phys. 64, 367–380 (2012)

    Google Scholar 

  38. Triki, H., Yildirim, A., Hayat, T., Aldossary, O.M., Biswas, A.: Rom. Rep. Phys. 64, 672–684 (2012)

    Google Scholar 

  39. Triki, H., Yildirim, A., Hayat, T., Aldossary, O.M., Biswas, A.: Rom. J. Phys. 57, 1029–1034 (2012)

    Google Scholar 

  40. El-Tantawy, S.A., Moslem, W.M., Schlickeiser, R.: Ionacoustic dark solitons collision in an ultracold neutral plasma. Phys. Scr. 90, 085606 (2015)

    Article  Google Scholar 

  41. Lü, X., Ma, W.X., Yu, J., Khalique, C.M.: Solitary waves with the Madelung fluid description: a generalized derivative nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 31, 40–46 (2016)

    Article  MathSciNet  Google Scholar 

  42. Lü, X., Lin, F.: Soliton excitations and shape-changing collisions in alpha helical proteins with interspine coupling at higher order. Commun. Nonlinear Sci. Numer. Simul. 32, 241–261 (2016)

    Article  MathSciNet  Google Scholar 

  43. Ma, W.X., Fuchssteiner, B.: Explicit and exact solutions to a Kolmogorov–Petrovskii–Piskunov equation. Int. J. Non-Linear Mech. 31, 329–338 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ma, W.X., Lee, J.-H.: A transformed rational function method and exact solutions to the 3 + 1 dimensional Jimbo-Miwa equation. Chaos Solitons Fractals 42, 1356–1363 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Lü, X., Ma, W.X., Khalique, C.M.: A direct bilinear Bäcklund transformation of a (2 + 1)-dimensional Korteweg–de Vries-like model. Appl. Math. Lett. 50, 37–42 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  46. Lü, X., Ma, W.X., Chen, S.T., Khalique, C.M.: A note on rational solutions to a Hirota–Satsuma-like equation. Appl. Math. Lett. 58, 13–18 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  47. Lü, X.: Madelung fluid description on a generalized mixed nonlinear Schrödinger equation. Nonlinear Dyn. 81, 239–247 (2015)

    Article  MATH  Google Scholar 

  48. Triki, H., Jovanoski, Z., Biswas, A.: Shock wave solutions to the Bogoyavlensky–Konopelchenko equation. Indian J. Phys. 88, 71–74 (2014)

    Article  Google Scholar 

  49. Triki, H., Jovanoski, Z., Biswas, A.: Dynamics of two-layered shallow water waves with coupled kdv equations. Rom. Rep. Phys. 66, 274–285 (2014)

    Google Scholar 

  50. Bhrawy, A.H., Abdelkawy, M.A., Biswas, A.: Cnoidal and snoidal wave solutions to coupled nonlinear wave equations by the extended jacobi’s elliptic function method. Communications in Nonlinear Science and Numerical Simulation 18, 915–925 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  51. Bhrawy, A.H., Abdelkawy, M.A., Kumar, S., Johnson, S., Biswas, A.: Solitons and other solutions to quantum Zakharov–Kuznetsov equation in quantum magneto-plasmas. Indian J. Phys. 87, 455–463 (2013)

    Article  Google Scholar 

  52. Bhrawy, A.H., Abdelkawy, M.A., Biswas, A.: Topological solitons and cnoidal waves to a few nonlinear equations in theoretical physics. Indian J. Phys. 87, 1125–1131 (2013)

    Article  Google Scholar 

  53. Bhrawy, A.H., Abdelkawy, M.A., Kumar, S., Biswas, A.: Solitons and other solutions to Kadomtsev–Petviashvili equation of B-type. Rom. J. Phys. 58, 729–748 (2013)

    MathSciNet  Google Scholar 

  54. Ebadi, G., Fard, N.Y., Bhrawy, A.H., Kumar, S., Triki, H., Yildirim, A., Biswas, A.: Solitons and other solutions to the (3 + 1)-dimensional extended Kadomtsev-Petviashvili equation with power law nonlinearity. Rom. Rep. Phys. 65, 27–62 (2013)

    Google Scholar 

  55. Biswas, A., Bhrawy, A.H., Abdelkawy, M.A., Alshaery, A.A., Hilal, E.M.: Symbolic computation of some nonlinear fractional differential equations. Rom. J. Phys. 59, 433–442 (2014)

    Google Scholar 

  56. Triki, H., Kara, A.H., Bhrawy, A., Biswas, A.: Soliton solution and conservation law of gear-grimshaw model for shallow water waves. Acta Phys. Pol. A 125, 1099–1106 (2014)

    Article  Google Scholar 

  57. Triki, H., Mirzazadeh, M., Bhrawy, A.H., Razborova, P., Biswas, A.: Soliton and other solutions to long-wave short wave interaction equation. Rom. J. Phys. 60, 72–86 (2015)

    Google Scholar 

  58. Mirzazadeh, M., Eslami, M., Bhrawy, A.H., Biswas, A.: Integration of complex-valued Klein–Gordon equation in \(\phi \)-4 field theory. Rom. J. Phys. 60, 293–310 (2015)

    Google Scholar 

  59. Bekir, A., Guner, O., Bhrawy, A.H., Biswas, A.: Solving nonlinear fractional differential equations using exp-function and g’/g-expansion methods. Rom. J. Phys. 60, 360–378 (2015)

    Google Scholar 

  60. Masemola, P., Kara, A.H., Bhrawy, A.H., Biswas, A.: Conservation laws for coupled wave equations. Rom. J. Phys. 61, 367–377 (2016)

    Google Scholar 

  61. Abdelkawy, M.A., Bhrawy, A.H., Zerrad, E., Biswas, A.: Application of tanh method to complex coupled nonlinear evolution equations. Acta Phys. Pol. A 129, 278–283 (2016)

    Article  Google Scholar 

  62. Bhrawy, A.H., Alzaidy, J.F., Abdelkawy, M.A., Biswas, A.: Jacobi spectral collocation approximation for multidimensional time fractional schrödinger’s equation. Nonlinear Dyn. 84(3), 1553–1567 (2016)

    Article  Google Scholar 

  63. Ma, W.X., Qin, Z.Y., Lü, X.: Lump solutions to dimensionally reduced p-gKP and p-gBKP equations. Nonlinear Dyn. 84, 923–931 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  64. Lü, X., Chen, S.T., Ma, W.X.: Constructing lump solutions to a generalized Kadomtsev-Petviashvili-Boussinesq equation. Nonlinear Dyn (2016). doi:10.1007/s11071-016-2905-z

    MathSciNet  MATH  Google Scholar 

  65. Ma, W.X., Zhou, Y.: Lump-type solutions to nonlinear differential equations derived from generalized bilinear equations. Mod. Phys. Lett. B (2015)

  66. Lü, X., Ma, W.X.: Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation. Nonlinear Dyn. 85, 1217–1222 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  67. Ma, W.X., Chen, M.: Direct search for exact solutions to the nonlinear Schrödinger equation. Appl. Math. Comput. 215, 2835–2842 (2009)

    MathSciNet  MATH  Google Scholar 

  68. Ma, W.X., Zhu, Z.N.: Solving the (3 + 1)-dimensional generalized KP and BKP equations by the multiple exp-function algorithm. Appl. Math. Comput. 218, 11871–11879 (2012)

    MathSciNet  MATH  Google Scholar 

  69. Sinelshchikov, D.I.: Comment on: New exact traveling wave solutions of the (3 + 1)-dimensional Kadomtsev-Petviashvili (KP) equation. Commun. Nonlinear Sci. Numer. Simul. 15, 3235–3236 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  70. Tacchella, A.: On rational solutions of multicomponent and matrix KP hierarchies. J. Geom. Phys. 61, 1319–1328 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  71. Wazwaz, A.M.: Two B-type Kadomtsev–Petviashvili equations of (2 + 1) and (3 + 1) dimensions: multiple soliton solutions, rational solutions and periodic solutions. Comput. Fluids 86, 357–362 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  72. Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 450, 1054–1057 (2007)

    Article  Google Scholar 

  73. Akhmediev, N., Dudley, J.M., Solli, D.R., Turitsyn, S.K.: Recent progress in investigating optical rogue waves, J. Opt. 15(2013) 060201, pp. 9

  74. Wang, D.S., Yin, S.J., Tian, Y., Liu, Y.: Integrability and bright soliton solutions to the coupled nonlinear Schrodinger equation with higher-order effects. Appl. Math. Comput. 229, 296–309 (2014)

    MathSciNet  Google Scholar 

  75. Wang, D.S., Wei, X.Q.: Integrability and exact solutions of a two-component Korteweg–de Vries system. Appl. Math. Lett. 51, 60–67 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  76. Wang, D.S., Han, W., Shi, Y.R., Li, Z.D., Liu, W.M.: Dynamics and stability of stationary states for the spin-1 Bose–Einstein condensates in a standing light wave. Commun. Nonlinear Sci. Numer. Simul. 36, 45–57 (2016)

    Article  MathSciNet  Google Scholar 

  77. Novikov, S., Manakov, S.V., Pitaevskii, L.P., Zakharov, V.E.: Theory of Solitons The Inverse Scattering Method. Consultants Bureau/A Division of Plenum Publishing Corporation, New York (1984)

    MATH  Google Scholar 

  78. Gesztesy, F., Schweiger, W.: Rational KP and mKP-solutions in Wronskian form. Rep. Math. Phys. 30, 205–222 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  79. Malfliet, W.A.: Solitary wave solutions of nonlinear wave equations. Am. J. Phys. 60, 650–654 (1992)

  80. Wazwaz, A.M.: The tanh-coth method for new compactons and solitons solutions for the K(n, n) and the K(n+1, n+1) equations. Appl. Math. Comput. 188, 1930–1940 (2007)

    MathSciNet  MATH  Google Scholar 

  81. Wang, M.L., Li, X.Z., Zhang, J.L.: The (G/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372, 417–423 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  82. Ma, W.X., Abdeljabbar, A.: A bilinear Backlund transformation of a (3 + 1)-dimensional generalized KP equation. Appl. Math. Lett. 12, 1500–1504 (2012)

    Article  MATH  Google Scholar 

  83. Ma, W.X.: Bilinear equations, Bell polynomials and linear superposition principle. J. Phys.: Conf. Ser. 411, 012021 (2013)

    Google Scholar 

  84. Ma, W.X.: Bilinear equations and resonant solutions characterized by Bell polynomials. Rep. Math. Phys. 72, 41–56 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  85. Zheng, H.C., Ma, W.X., Gu, X.: Hirota bilinear equations with linear subspaces of hyperbolic and trigonometric function solutions. Appl. Math. Comput. 220, 226–234 (2013)

    MathSciNet  MATH  Google Scholar 

  86. Huang, Z.R., Tian, B., Zhen, H.L., Jiang, Y., Wang, Y.P., Sun, Y.: Bäcklund transformations and soliton solutions for a (3 + 1)-dimensional B-type Kadomtsev–Petviashvili equation in fluid dynamics. Nonlinear Dyn. 80, 1–7 (2015)

    Article  MATH  Google Scholar 

  87. Tu, J.M., Tian, S.F., Xu, M.J., Song, S.Q., Zhang, T.T.: Bäcklund transformation, infinite conservation laws and periodic wave solutions of a generalized (3 + 1)-dimensional nonlinear wave in liquid with gas bubbles. Nonlinear Dyn. 83, 1199–1215 (2016)

    Article  MATH  Google Scholar 

  88. Wazwaz, A.M.: Gaussian solitary wave solutions for nonlinear evolution equations with logarithmic nonlinearities. Nonlinear Dyn. 83, 591–596 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  89. Na, L.: Bäcklund transformation and multi-soliton solutions for the (3 + 1)-dimensional BKP equation with Bell polynomials and symbolic computation. Nonlinear Dyn. 82, 311–318 (2015)

    Article  MATH  Google Scholar 

  90. Liu, J., Mu, G., Dai, Z.D., Luo, H.Y.: Spatiotemporal deformation of multi-soliton to (2 + 1)-dimensional KdV equation. Nonlinear Dyn. 83, 355–360 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 11101029, 11271362 and 11375030), the Fundamental Research Funds for the Central Universities (No. 610806), Beijing City Board of Education Science and Technology Key Project (No. KZ201511232034), Beijing Nova program (No. Z131109 000413029), and Beijing Finance Funds of Natural Science Program for Excellent Talents (No. 2014000026833ZK19).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Li Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, JP., Sun, YL. Study of lump solutions to dimensionally reduced generalized KP equations. Nonlinear Dyn 87, 2755–2763 (2017). https://doi.org/10.1007/s11071-016-3225-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3225-z

Keywords

Navigation