Skip to main content
Log in

On the generation of electrical compact pulses: theory and simulations

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this work, a self-sustained generator of pulse signal voltages with compact shape is introduced and investigated. It consists of a coupling between the modified Colpitts oscillator (MCO) and a nonlinear electrical transmission line (NLTL) with the appropriated inter-site nonlinearities, exhibiting pulse signal voltages with compact shape, with interesting properties compared to those of pulse solitons. From the state equations governing the dynamics of the MCO part, and through the bifurcation diagram, we have first shown that the system may exhibit an harmonic solution, in certain domain of the control parameter, useful for exciting the NLTL part. In the parameter where the MCO experiences harmonic oscillations, the conditions for a synchronized dynamics of the two main parts of the device are established. Within these conditions, the system generates a train of compact voltage pulse signals. The generator performances namely the pulse width, the repetition rate and the period of pulse repetition rate are derived analytically, and the results indicate their dependence on the characteristic parameters of the circuit. The results of numerical and Pspice simulations have confirmed the accuracy of the analytical investigations and the capacity of the circuit to work as a generator of these compact pulse signal voltages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P. Rosenau, J.M. Hyman, Phys. Rev. Lett. 70, 564–567 (1993)

    Article  ADS  Google Scholar 

  2. M. Kahrs, IEEE Trans. Microwave Theory Tech. 51, 1787–1805 (2003)

    Article  ADS  Google Scholar 

  3. R.Y. Yu, M. Reddy, J. Pusl, S.T. Allen, M. Case, M.J.W. Rodwell, IEEE Trans. Microwave Theory Tech. 43, 721–729 (1995)

    Article  ADS  Google Scholar 

  4. X. Li, D.S. Ricketts, D. Ham, Solitons in Electrical Networks (Yearbook of Science and Technology (The McGraw-Hill Companies, NY, 2008).

    Google Scholar 

  5. P. Marquie, J.M. Bilbault, M. Remoissenet, Phys. Rev. E 51, 6127 (1995)

    Article  ADS  Google Scholar 

  6. E. Kengne, A. Lakhssassi, R. Vaillancourt, Wu.-M. Liu, Eur. Phys. J. Plus 128, 63 (2013)

    Article  Google Scholar 

  7. F. Kenmogne, David Yemélé, J. Kengne, D. Ndjanfang, Phys. Rev. E 90, 052921 (2014)

    Article  ADS  Google Scholar 

  8. J.E. Ndecfo, G.R. Deffo, S.B. Yamgou, F.B. Pelap, Eur. Phys. J. Plus 135, 57 (2020)

    Article  Google Scholar 

  9. T. Kuusela, J. Hietarinta, Rev. Sci. Instrum. 62, 2266–2270 (1991)

    Article  ADS  Google Scholar 

  10. K. Narahara, Jpn. J. Appl. Phys. 42, 5508–5515 (2003)

    Article  ADS  Google Scholar 

  11. K. Narahara, M. Nakamura, Jpn. J. Appl. Phys 42, 6327–6334 (2003)

    Article  ADS  Google Scholar 

  12. R.D.S. Ricketts, X. Li, N. Sun, K. Woo, D. Ham, IEEE J. Solid-State Circuits 42, 1657–1668 (2007)

    Article  ADS  Google Scholar 

  13. F. Kenmogne, D. Yemele, P. Woafo, Phys. Rev. E 85, 056606–056619 (2012)

    Article  ADS  Google Scholar 

  14. G. M.Maggio, F. O. De M. P. Kennedy, IEEE Trans. Circ. Syst. I 46, (1999) 1118-1130

  15. G.M. Maggio, M.D. Bernardo, M.P. Kennedy, IEEE Trans. Circ. Syst. I(47), 1160–1177 (2000)

    Article  Google Scholar 

  16. M. Kennedy, IEEE Trans. Circ. Syst. I(41), 4771–774 (1994)

    Google Scholar 

  17. M.I. Sobhy, A.R. Shehata, IEEE MTT-S Digest 1701–1704 (2000)

  18. M. J.Rodwell, S. T. Allen, R. Y. Yu, M. G. Case, U. Bhattacharya,M. Reddy, Carman, E.,M. Kamegawa, Y. Konishi, J.Pusl, R. Pullela, Proc. IEEE 82,(1994) 1037-1059

  19. M. Remoissenet, Waves Called Solitons, 3rd edn. (Springer-Verlag, Berlin, 1999)

    Book  Google Scholar 

  20. D. Ndjanfang, D. Yemélé, P. Marquié, T.C. Kofané, Prog. Electromag. Res. B 52, 207–236 (2013)

    Article  Google Scholar 

  21. D. Ndjanfang, D. Yemélé, P. Marquié, T.C. Kofané, Commun. Nonlinear Sci. Numer. Simul. 65, 309–322 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  22. R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, D.E. Knuth, Adv. Comput. Math. 5, 329–359 (1996)

    Article  MathSciNet  Google Scholar 

  23. A. Ascoli, P. Curran, D.E.G. Hare, O. Feely, Int. J. Cir. Theor. Appl. 35, 33–70 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Désiré Ndjanfang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ndjanfang, D., Yemélé, D. & Kofané, T.C. On the generation of electrical compact pulses: theory and simulations. Eur. Phys. J. Plus 136, 234 (2021). https://doi.org/10.1140/epjp/s13360-021-01211-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01211-7

Navigation