Skip to main content
Log in

First-principles investigations of optoelectronic properties of ZnO\(\left( {11\overline{2}0} \right)\) and ZnO(0001) monolayers

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Devising the two-dimensional (2D) structures of low-cost and non-toxic semiconductors for nanoscale technological applications has attracted substantial interest since the past decade. In this work, we design two types of ZnO monolayers derived from polar 0001-plane and nonpolar \(11\overline{2}0\)-plane of the wurtzite structure, and explore their physical properties using the first-principles approach. Both ZnO\(\left( {11\overline{2}0} \right)\) and ZnO(0001) monolayers exhibited cohesive and formation energies comparable to that of the stable wurtzite-structured ZnO. However, both monolayers exhibited substantially different electronic structures of band gaps 1.56 eV for single-layered ZnO\(\left( {11\overline{2}0} \right)\) and 0.71 eV for ZnO(0001) monolayer. The edges of the valence and conduction bands of ZnO\(\left( {11\overline{2}0} \right)\) monolayer are formed by parabolic bands, whereas almost flat band gap edges have been seen for ZnO(0001) surface. As a result, charge carriers associated with ZnO\(\left( {11\overline{2}0} \right)\) monolayer exhibited relatively lighter effective mass than ZnO(0001) monolayer. The ZnO(0001) monolayer exhibited symmetrical bond lengths and subsequently isotropic optical spectra, whereas asymmetrical bond lengths and anisotropic subsequent optical spectra have been recorded for ZnO\(\left( {11\overline{2}0} \right)\) monolayer. The optical absorption recorded for the designed monolayers has been found higher than their bulk counterpart. The refraction spectra indicated these monolayers of transparent behavior over a significant range of the electromagnetic spectrum. These fascinating features of ZnO\(\left( {11\overline{2}0} \right)\) and ZnO(0001) monolayers suggest them suitable for applications in electronic and optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

This manuscript has associated data in a data repository. [Authors' comment: The data that support the findings of this study are available from the corresponding author upon reasonable request.]

References

  1. S. Zhang, M. Xie, F. Li, Z. Yan et al., Semiconducting group 15 monolayers: a broad range of band gaps and high carrier mobilities. Angew. Chem. Int. Ed. 55(5), 1666–1669 (2016)

    Article  Google Scholar 

  2. V. Sorkin, Y. Cai, Z. Ong, G. Zhang et al., Recent advances in the study of phosphorene and its nanostructures. Crit. Rev. Solid State Mater. Sci. 42(1), 1–82 (2017)

    Article  ADS  Google Scholar 

  3. S.C. Dhanabalan, J.S. Ponraj, H. Zhang, Q. Bao, Present perspectives of broadband photodetectors based on nanobelts, nanoribbons, nanosheets and the emerging 2D materials. Nanoscale 8(12), 6410–6434 (2016)

    Article  ADS  Google Scholar 

  4. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    Article  ADS  Google Scholar 

  5. D. Tyagi, H. Wang, W. Huang, L. Hu et al., Recent advances in two-dimensional materials based sensing technology towards health and environmental applications. Nanoscale 5, 67 (2020)

    Google Scholar 

  6. C.E.N.E.R. Rao, A.E.K. Sood, K.E.S. Subrahmanyam, A. Govindaraj, Graphene: the new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 48(42), 7752–7777 (2009)

    Article  Google Scholar 

  7. L.C. Gomes, A. Carvalho, A.C. Neto, Vacancies and oxidation of two-dimensional group-IV monochalcogenides. Phys. Rev. B 94(5), 054103 (2016)

    Article  ADS  Google Scholar 

  8. H. Zheng, X.-B. Li, N.-K. Chen, S.-Y. Xie et al., Monolayer II-VI semiconductors: A first-principles prediction. Phys. Rev. B 92(11), 115307 (2015)

    Article  ADS  Google Scholar 

  9. H. Liu, A.T. Neal, Z. Zhu, Z. Luo et al., Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8(4), 4033–4041 (2014)

    Article  Google Scholar 

  10. L. Li, Y. Yu, G.J. Ye, Q. Ge et al., Black phosphorus field-effect transistors. Nat. Nanotechnol. 9(5), 372–377 (2014)

    Article  ADS  Google Scholar 

  11. Q. Guo, A. Pospischil, M. Bhuiyan, H. Jiang et al., Black phosphorus mid-infrared photodetectors with high gain. Nano Lett. 16(7), 4648–4655 (2016)

    Article  ADS  Google Scholar 

  12. C. Jin, F. Lin, K. Suenaga, S. Iijima, Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys. Rev. Lett. 102(19), 195505 (2009)

    Article  ADS  Google Scholar 

  13. L. Wang, B. Wu, J. Chen, H. Liu et al., Monolayer hexagonal boron nitride films with large domain size and clean interface for enhancing the mobility of graphene-based field-effect transistors. Adv. Mater. 26(10), 1559–1564 (2014)

    Article  Google Scholar 

  14. Y. Lin, T.V. Williams, J.W. Connell, Soluble, exfoliated hexagonal boron nitride nanosheets. J. Phys. Chem. Lett. 1(1), 277–283 (2010)

    Article  Google Scholar 

  15. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman et al., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012)

    Article  ADS  Google Scholar 

  16. D.J. Late, Y.-K. Huang, B. Liu, J. Acharya et al., Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 7(6), 4879–4891 (2013)

    Article  Google Scholar 

  17. C.N.R. Rao, Transition metal oxides. Annu. Rev. Phys. Chem. 40(1), 291–326 (1989)

    Article  ADS  Google Scholar 

  18. K. Kalantar-zadeh, J.Z. Ou, T. Daeneke, A. Mitchell et al., Two dimensional and layered transition metal oxides. Appl. Mater. Today 5, 73–89 (2016)

    Article  Google Scholar 

  19. Z. Tu, X. Hu, Elasticity and piezoelectricity of zinc oxide crystals, single layers, and possible single-walled nanotubes. Phys. Rev. B 74(3), 035434 (2006)

    Article  ADS  Google Scholar 

  20. Z. Tu, First-principles study on physical properties of a single ZnO monolayer with graphene-like structure. J. Comput. Theor. Nanosci. 7(6), 1182–1186 (2010)

    Article  Google Scholar 

  21. F. Claeyssens, C.L. Freeman, N.L. Allan, Y. Sun et al., Growth of ZnO thin films—experiment and theory. J. Mater. Chem. 15(1), 139–148 (2005)

    Article  Google Scholar 

  22. H.-K. Hong, J. Jo, D. Hwang, J. Lee et al., Atomic scale study on growth and heteroepitaxy of ZnO monolayer on graphene. Nano Lett. 17(1), 120–127 (2017)

    Article  ADS  Google Scholar 

  23. L. Chen, S. Li, Y. Cui, Z. Xiong et al., Manipulating the electronic and magnetic properties of ZnO monolayer by noble metal adsorption: a first-principles calculations. Appl. Surf. Sci. 479, 440–448 (2019)

    Article  ADS  Google Scholar 

  24. C. Tusche, H. Meyerheim, J. Kirschner, Observation of depolarized ZnO (0001) monolayers: formation of unreconstructed planar sheets. Phys. Rev. Lett. 99(2), 026102 (2007)

    Article  ADS  Google Scholar 

  25. G. Weirum, G. Barcaro, A. Fortunelli, F. Weber et al., Growth and surface structure of zinc oxide layers on a Pd (111) surface. J. Phys. Chem. C 114(36), 15432–15439 (2010)

    Article  Google Scholar 

  26. N. Marana, V. Longo, E. Longo, J. Martins et al., Electronic and structural properties of the (1010) and (1120) ZnO surfaces. J. Phys. Chem. A 112(38), 8958–8963 (2008)

    Article  Google Scholar 

  27. J.-T. Luo, A.-J. Quan, Z.-H. Zheng, G.-X. Liang et al., Study on the growth of Al-doped ZnO thin films with (112 [combining macron] 0) and (0002) preferential orientations and their thermoelectric characteristics. RSC Adv. 8(11), 6063–6068 (2018)

    Article  ADS  Google Scholar 

  28. O. Dulub, L.A. Boatner, U. Diebold, STM study of the geometric and electronic structure of ZnO (0001)-Zn, (0001)-O, (1010), and (1120) surfaces. Surf. Sci. 519(3), 201–217 (2002)

    Article  ADS  Google Scholar 

  29. B.U. Haq, S. AlFaify, T. Alshahrani, R. Ahmed et al., Exploring optoelectronic properties of ZnO monolayers originated from NaCl-and GeP-like polymorphs: a first-principles study. Results Phys. 19, 103367 (2020)

    Article  Google Scholar 

  30. B.U. Haq, S. AlFaify, T. Alshahrani, R. Ahmed et al., Investigations of thermoelectric properties of ZnO monolayers from the first-principles approach. Physica E 126, 114444 (2021)

    Article  Google Scholar 

  31. B.U. Haq, S. AlFaify, T. Alshahrani, R. Ahmed et al., Devising square-and hexagonal-shaped monolayers of ZnO for nanoscale electronic and optoelectronic applications. Sol. Energy 211, 920–927 (2020)

    Article  ADS  Google Scholar 

  32. B.U. Haq, S. AlFaify, T. Al-shahrani, S. Al-Qaisi et al., First-principles investigations of ZnO monolayers derived from zinc-blende and 5–5 phases for advanced thermoelectric applications. J. Phys. Chem. Solids 149, 109780 (2020)

    Article  Google Scholar 

  33. M. Wu, D. Sun, C. Tan, X. Tian et al., Al-doped ZnO monolayer as a promising transparent electrode material: a first-principles study. Materials 10(4), 359 (2017)

    Article  ADS  Google Scholar 

  34. A. Es-Smairi, N. Fazouan, E.H. Atmani, Enhanced optical and thermoelectric properties of ZnS monolayer and stacked bilayer compared with bulk. Mater. Res. Express 6(12), 125047 (2019)

    Article  ADS  Google Scholar 

  35. S. Xu, Z.L. Wang, One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res. 4(11), 1013–1098 (2011)

    Article  Google Scholar 

  36. W. Sun, Y. Li, J.K. Jha, N.D. Shepherd et al., Effect of surface adsorption and non-stoichiometry on the workfunction of ZnO surfaces: a first principles study. J. Appl. Phys. 117(16), 165304 (2015)

    Article  ADS  Google Scholar 

  37. C. Qin, Y. Gu, X. Sun, X. Wang et al., Structural dependence of piezoelectric size effects and macroscopic polarization in ZnO nanowires: a first-principles study. Nano Res. 8(6), 2073–2081 (2015)

    Article  Google Scholar 

  38. J. Wang, X. Chen, S. Wu, D. Bai et al., Stability and band offsets of nonpolar ZnO on (001) LaAlO3. Vacuum 150, 29–34 (2018)

    Article  ADS  Google Scholar 

  39. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  ADS  Google Scholar 

  40. Blaha, P., K. Schwarz, G. Madsen, D. Kvasnicka, et al.: wien2k. An augmented plane wave+ local orbitals program for calculating crystal properties, 2001.

  41. B.U. Haq, R. Ahmed, A. Shaari, F.E.H. Hassan et al., Study of wurtzite and zincblende GaN/InN based solar cells alloys: first-principles investigation within the improved modified Becke-Johnson potential. Sol. Energy 107, 543–552 (2014)

    Article  ADS  Google Scholar 

  42. B.U. Haq, A. Afaq, G. Abdellatif, R. Ahmed et al., First principles study of scandium nitride and yttrium nitride alloy system: prospective material for optoelectronics. Superlattices Microstruct. 85, 24–33 (2015)

    Article  ADS  Google Scholar 

  43. B.U. Haq, M.B. Kanoun, R. Ahmed, M. Bououdina et al., Hybrid functional calculations of potential hydrogen storage material: complex dimagnesium iron hydride. Int. J. Hydrogen Energy 39(18), 9709–9717 (2014)

    Article  Google Scholar 

  44. B. Ul Haq, R. Ahmed, S. Goumri-Said, A. Shaari et al., Electronic structure engineering of ZnO with the modified Becke-Johnson exchange versus the classical correlation potential approaches. Phase Trans. 86(12), 1167–1177 (2013)

    Article  Google Scholar 

  45. B.U. Haq, R. Ahmed, S. Goumri-Said, DFT characterization of cadmium doped zinc oxide for photovoltaic and solar cell applications. Sol. Energy Mater. Sol. Cells 130, 6–14 (2014)

    Article  Google Scholar 

  46. B.U. Haq, R. Ahmed, J.Y. Rhee, A. Shaari et al., Composition-induced influence on the electronic band structure, optical and thermoelectric coefficients of the highly mismatched GaNSb alloy over the entire range: a DFT analysis. J. Alloy. Compd. 693, 1020–1027 (2017)

    Article  Google Scholar 

  47. B.U. Haq, R. Ahmed, M. Mohamad, A. Shaari et al., Engineering of highly mismatched alloy with semiconductor and semi-metallic substituent’s for photovoltaic applications. Curr. Appl. Phys. 17(2), 162–168 (2017)

    Article  ADS  Google Scholar 

  48. D. Koller, F. Tran, P. Blaha, Merits and limits of the modified Becke-Johnson exchange potential. Phys. Rev. B 83(19), 195134 (2011)

    Article  ADS  Google Scholar 

  49. D. Koller, F. Tran, P. Blaha, Improving the modified Becke-Johnson exchange potential. Phys. Rev. B 85(15), 155109 (2012)

    Article  ADS  Google Scholar 

  50. F. Tran, P. Blaha, K. Schwarz, Band gap calculations with Becke-Johnson exchange potential. J. Phys. Condens. Matter 19(19), 196208 (2007)

    Article  ADS  Google Scholar 

  51. F.-B. Zheng, C.-W. Zhang, P.-J. Wang, H.-X. Luan, First-principles prediction of the electronic and magnetic properties of nitrogen-doped ZnO nanosheets. Solid State Commun. 152(14), 1199–1202 (2012)

    Article  ADS  Google Scholar 

  52. D. Fang, A. Rosa, R. Zhang, T. Frauenheim, Theoretical exploration of the structural, electronic, and magnetic properties of ZnO nanotubes with vacancies, antisites, and nitrogen substitutional defects. J. Phys. Chem. C 114(13), 5760–5766 (2010)

    Article  Google Scholar 

  53. M. Topsakal, S. Cahangirov, E. Bekaroglu, S. Ciraci, First-principles study of zinc oxide honeycomb structures. Phys. Rev. B 80(23), 235119 (2009)

    Article  ADS  Google Scholar 

  54. U.H. Bakhtiar, R. Ahmed, R. Khenata, M. Ahmed et al., A first-principles comparative study of exchange and correlation potentials for ZnO. Mater. Sci. Semicond. Process. 16(4), 1162–1169 (2013)

    Article  Google Scholar 

  55. J.E. Jaffe, J.A. Snyder, Z. Lin, A.C. Hess, LDA and GGA calculations for high-pressure phase transitions in ZnO and MgO. Phys. Rev. B 62(3), 1660 (2000)

    Article  ADS  Google Scholar 

  56. C. Li, W. Guo, Y. Kong, H. Gao, First-principles study of the dependence of ground-state structural properties on the dimensionality and size of ZnO nanostructures. Phys. Rev. B 76(3), 035322 (2007)

    Article  ADS  Google Scholar 

  57. R. Ramprasad, H. Zhu, P. Rinke, M. Scheffler, New perspective on formation energies and energy levels of point defects in nonmetals. Phys. Rev. Lett. 108(6), 066404 (2012)

    Article  ADS  Google Scholar 

  58. B.U. Haq, S. AlFaify, A. Laref, R. Ahmed et al., Dimensionality reduction of germanium selenide for high-efficiency thermoelectric applications. Ceram. Int. 45(12), 15122–15127 (2019)

    Article  Google Scholar 

  59. B. Ul Haq, S. AlFaify, A. Laref, Exploring novel flat-band polymorphs of single-layered germanium sulfide for high-efficiency thermoelectric applications. J. Phys. Chem. C 123(30), 18124–18131 (2019)

    Article  Google Scholar 

  60. B.U. Haq, S. AlFaify, A. Laref, R. Ahmed et al., Optoelectronic properties of new direct bandgap polymorphs of single-layered Germanium sulfide. Ceram. Int. 45(14), 18073–18078 (2019)

    Article  Google Scholar 

  61. B.U. Haq, S. AlFaify, A. Laref, Investigations of the optoelectronic properties of novel polymorphs of single-layered Tin-Sulfide for nanoscale optoelectronic and photovoltaic applications. Sol. Energy 186, 29–36 (2019)

    Article  ADS  Google Scholar 

  62. Z.-Y. Hu, K.-Y. Li, Y. Lu, Y. Huang et al., High thermoelectric performances of monolayer SnSe allotropes. Nanoscale 9(41), 16093–16100 (2017)

    Article  Google Scholar 

  63. H. Guo, Y. Zhao, N. Lu, E. Kan et al., Tunable magnetism in a nonmetal-substituted ZnO monolayer: a first-principles study. J. Phys. Chem. C 116(20), 11336–11342 (2012)

    Article  Google Scholar 

  64. J. Ren, H. Zhang, X. Cheng, Electronic and magnetic properties of all 3d transition-metal-doped ZnO monolayers. Int. J. Quantum Chem. 113(19), 2243–2250 (2013)

    Article  Google Scholar 

  65. L. Chen, A. Wang, Z. Xiong, S. Shi et al., Effect of hole doping and strain modulations on electronic structure and magnetic properties in ZnO monolayer. Appl. Surf. Sci. 467, 22–29 (2019)

    Article  ADS  Google Scholar 

  66. X. Jia, Q. Hou, Z. Xu, L. Qu, Effect of Ce doping on the magnetic and optical properties of ZnO by the first principle. J. Magn. Magn. Mater. 465, 128–135 (2018)

    Article  ADS  Google Scholar 

  67. R. Chowdhury, S. Adhikari, P. Rees, Optical properties of silicon doped ZnO. Phys. B 405(23), 4763–4767 (2010)

    Article  ADS  Google Scholar 

  68. F.-G. Kuang, X.-Y. Kuang, S.-Y. Kang, M.-M. Zhong et al., Ab initio study on physical properties of wurtzite, zincblende, and rocksalt structures of zinc oxide using revised functionals. Mater. Sci. Semicond. Process. 31, 700–708 (2015)

    Article  Google Scholar 

  69. L. Xu, M. Yang, S.J. Wang, Y.P. Feng, Electronic and optical properties of the monolayer group-IV monochalcogenides M X (M= Ge, Sn; X= S, Se, Te). Phys. Rev. B 95(23), 235434 (2017)

    Article  ADS  Google Scholar 

  70. F. Wooten, Optical Properties of Solids (Academic Press, New York, 2013).

    Google Scholar 

  71. S. Shabbir, A. Shaari, B.U. Haq, R. Ahmed et al., Investigations of novel polymorphs of ZnO for optoelectronic applications. Optik 206, 164285 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through the General Research Program under Grant No. G.R.P/67/42.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bakhtiar Ul Haq.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ul Haq, B., AlFaify, S. & Ahmed, R. First-principles investigations of optoelectronic properties of ZnO\(\left( {11\overline{2}0} \right)\) and ZnO(0001) monolayers. Eur. Phys. J. Plus 136, 251 (2021). https://doi.org/10.1140/epjp/s13360-021-01197-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01197-2

Navigation