Skip to main content
Log in

The electronic and optical properties of monovalent atom-doped ZnO monolayers: the density functional theory

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The current study deals with the structural, electronic and optical properties of monovalent element-doped ZnO monolayers using density functional theory. Specifically, we have considered structural and optical properties of monovalent (\(\mathrm {M}=\mathrm {Li}\), Na and K) atom-doped ZnO monolayers. Among these monovalent elements, the substitution of Li with Zn atom maintains the hexagonal planar geometry of the ZnO monolayer, but Na and K elements protrude out from the plane of the ZnO monolayer. The Li atom binds more strongly with the ZnO sheet compared with Na and K atoms. A Li-doped ZnO monolayer shows metallic behaviour whereas Na- and K-doped ZnO monolayers show half metallic magnetic behaviour. The magnetic moment is of the order of \(1\upmu _{\mathrm{B}}\). The magnetic moment mainly originates from nonbonding O\(_{\mathrm{p}}\) states. The substitution of an alkali metal element-doped ZnO monolayer leads to a red-shift in optical spectra. The dielectric constant of a monovalent element-doped ZnO sheet increases compared with that of a pristine ZnO sheet. This study provides the basis to develop opto-electronic devices using doped ZnO monolayers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Triboulet R 2014 Prog. Cryst. Growth Charact. Mater. 60 1

    Article  CAS  Google Scholar 

  2. Singh S, Thiyagarajan P, Kant K M, Anita D, Thirupathiah S, Rama N et al 2007 J. Phys. D: Appl. Phys. 40 6312

    Article  CAS  Google Scholar 

  3. Ozgur U, Hofstetter D and Mokoc H 2010 Proc. IEEE 98 7

    Google Scholar 

  4. Djurisic A B, Ng A M C and Chen X Y 2010 Prog. Quant. Electron. 34 191

    Article  CAS  Google Scholar 

  5. Zhang Y, Nayak T R, Hong H and Cai W 2013 Curr. Mol. Med. 10 1633

    Article  Google Scholar 

  6. Vyas S 2018 Chin. J. Phys. 56 117

    Article  CAS  Google Scholar 

  7. Tu Z 2010 J. Comput. Theor. Nanosci. 7 1182

    Article  CAS  Google Scholar 

  8. Park J-H, Choi H-J, Choi Y-J, Sohn S-H and Park J-G 2004 J. Mater. Chem. 14 35

    Article  Google Scholar 

  9. Ta H Q, Zhao L, Pohl D, Pang J, Trzebicka B, Rellinghaus B et al 2016 Crystals 6 100

    Article  Google Scholar 

  10. Topsakal M, Cahangirov S, Bekaroglu E and Ciraci S 2009 Phys. Rev. B 80 235119

    Article  Google Scholar 

  11. Tan C, Sun D, Tian X and Huang Y 2016 Materials 9 877

    Article  Google Scholar 

  12. Sun D, Tan C, Tian X and Huang Y 2017 Materials 10 703

    Article  Google Scholar 

  13. Tan C, Sun D, Xu D, Tian X and Huang Y 2016 Ceram. Int. 42 10997

    Article  CAS  Google Scholar 

  14. Li F, Zhang C and Zhao M 2013 Physica E 53 101

    Article  CAS  Google Scholar 

  15. Luan Z, Sun D, Tan C, Tian X and Huang Y 2017 Integr. Ferroelectr. 179 84

    Article  CAS  Google Scholar 

  16. Parhizgar S S and Behestian J 2018 Comp. Condens. Matter 15 1

    Article  Google Scholar 

  17. Fang D Q, Zhang Y and Zhang S L 2016 EPL 114 47012

    Article  Google Scholar 

  18. Supatutkul C, Pramchu S, Jareonjittichai A and Laosiritaworn Y 2017 Ceram. Int. 43 S525

    Article  CAS  Google Scholar 

  19. Vienna ab initio Simulation Package (VASP), Technische Universitat Wien, 1999

  20. Blochl P E 1994 Phys. Rev. B 50 17953

    Article  CAS  Google Scholar 

  21. Kresse G and Joubert D 1999 Phys. Rev. B 59 1758

    Article  CAS  Google Scholar 

  22. Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169

    Article  CAS  Google Scholar 

  23. Perdew J, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    Article  CAS  Google Scholar 

  24. Guo H, Zhao Y, Lu N, Kan E, Zeng X C, Wu X et al 2012 J. Phys. Chem. C 116 11336

    Article  CAS  Google Scholar 

  25. Tang W, Sanville E and Henkelman G 2009 J. Phys.: Condens. Matter 21 084204

    CAS  Google Scholar 

  26. Ma D, Wang Q, Li T, Tang Z, Yang G, He C et al 2015 J. Mater. Chem. C 3 9964

    Article  CAS  Google Scholar 

  27. Baei M, Peyghan A and Bagheri Z 2012 Chin. J. Chem. Phys. 25 6

    Article  Google Scholar 

  28. Peyghan A and Noei M 2014 Physica B 432 105

    Article  CAS  Google Scholar 

  29. Saaedi A, Yousefi R, Jamali-Sheini F, Cheraghizade M, Zak A and Huang M 2014 Ceram. Int. 40 4327

    Article  CAS  Google Scholar 

  30. Ghosh S, Khan G, Ghosh A, Varma S and Mandal K 2013 CrystEngComm 15 7748

    Article  CAS  Google Scholar 

  31. Kumar S and Thangovel R 2013 J. Sol-Gel Sci. Technol. 6750

    Article  Google Scholar 

Download references

Acknowledgements

SYW and MDD acknowledge the Centre for Development of Advance Computing (CDAC), Pune and Bangalore and the Bioinformatics Resources and Applications Facility (BRAF) for providing supercomputing facilities. The authors gratefully acknowledge financial assistance by the BCUD, S.P. Pune University, Pune.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mrinalini D Deshpande.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wakhare, S.Y., Deshpande, M.D. The electronic and optical properties of monovalent atom-doped ZnO monolayers: the density functional theory. Bull Mater Sci 42, 206 (2019). https://doi.org/10.1007/s12034-019-1901-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1901-6

Keywords

Navigation