Skip to main content
Log in

On generalized Melvin solutions for Lie algebras of rank 4

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We deal with generalized Melvin-like solutions associated with Lie algebras of rank 4 (\(A_4\), \(B_4\), \(C_4\), \(D_4\), \(F_4\)). Any solution has static cylindrically symmetric metric in D dimensions in the presence of four Abelian two-form and four scalar fields. The solution is governed by four moduli functions \(H_s(z)\) (\(s = 1,\ldots ,4\)) of squared radial coordinate \(z=\rho ^2\) obeying four differential equations of the Toda chain type. These functions are polynomials of powers \((n_1,n_2, n_3, n_4) = (4,6,6,4), (8,14,18,10), (7,12,15,16), (6,10,6,6), (22,42,30,16)\) for Lie algebras \(A_4\), \(B_4\), \(C_4\), \(D_4\), \(F_4\), respectively. The asymptotic behaviour for the polynomials at large z is governed by an integer-valued \(4 \times 4\) matrix \(\nu \) connected in a certain way with the inverse Cartan matrix of the Lie algebra and (in \(A_4\) case) the matrix representing a generator of the \({\mathbb {Z}}_2\)-group of symmetry of the Dynkin diagram. The symmetry properties and duality identities for polynomials are studied. We also present two-form flux integrals over a two-dimensional submanifold. Dilatonic black hole analogs of the obtained Melvin-type solutions, e.g. “phantom” ones, are also considered. The phantom black holes are described by fluxbrane polynomials under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. In Ref. [32], the existence of polynomial Toda chain solutions corresponding to \(E_8\) Lie algebra (with proper powers of polynomials) was conjected, and polynomials related to \(D_4\) Lie algebra were presented.

References

  1. M.A. Melvin, Pure magnetic and electric geons. Phys. Lett. 8, 65–68 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  2. A.A. Golubtsova, V.D. Ivashchuk, On multidimensional analogs of Melvin’s solution for classical series of Lie algebras. Grav. Cosmol. 15(2), 144–147 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  3. V.D. Ivashchuk, Composite fluxbranes with general intersections. Class. Quantum Grav. 19, 3033–3048 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  4. K.A. Bronnikov, G.N. Shikin, On interacting fields in general relativity theory. Izvest. Vuzov (Fizika) 9, 25–30 (1977) (in Russian); Russ. Phys. J. 20, 1138–1143 (1977)

  5. G.W. Gibbons, D.L. Wiltshire, Spacetime as a membrane in higher dimensions. Nucl. Phys. B 287, 717–742 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  6. G. Gibbons, K. Maeda, Black holes and membranes in higher dimensional theories with Dilaton fields. Nucl. Phys. B 298, 741–775 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  7. F. Dowker, J.P. Gauntlett, D.A. Kastor, J. Traschen, Pair creation of Dilaton black holes. Phys. Rev. D 49, 2909–2917 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  8. H.F. Dowker, J.P. Gauntlett, G.W. Gibbons, G.T. Horowitz, Nucleation of \(P\)-branes and fundamental strings. Phys. Rev. D 53, 7115 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  9. D.V. Gal’tsov, O.A. Rytchkov, Generating branes via sigma models. Phys. Rev. D 58, 122001 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  10. C.-M. Chen, D.V. Gal’tsov, S.A. Sharakin, Intersecting \(M\)-fluxbranes. Grav. Cosmol. 5(1), 45–48 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  11. M.S. Costa, M. Gutperle, The Kaluza–Klein Melvin solution in M-theory. JHEP 0103, 027 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  12. P.M. Saffin, Gravitating fluxbranes. Phys. Rev. D 64, 024014 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Gutperle, A. Strominger, Fluxbranes in string theory. JHEP 0106, 035 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  14. M.S. Costa, C.A. Herdeiro, L. Cornalba, Flux-branes and the dielectric effect in string theory. Nuclear Phys. B 619, 155–190 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  15. R. Emparan, Tubular branes in fluxbranes. Nucl. Phys. B 610, 169 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  16. J.M. Figueroa-O’Farrill, G. Papadopoulos, Homogeneous fluxes, branes and a maximally supersymmetric solution of \(M\)-theory. JHEP 0106, 036 (2001)

    Article  MathSciNet  Google Scholar 

  17. J.G. Russo, A.A. Tseytlin, Supersymmetric fluxbrane intersections and closed string tachyons. JHEP 11, 065 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  18. C.-M. Chen, D.V. Gal’tsov, P.M. Saffin, Supergravity fluxbranes in various dimensions. Phys. Rev. D 65, 084004 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  19. I.S. Goncharenko, V.D. Ivashchuk, V.N. Melnikov, Fluxbrane and S-brane solutions with polynomials related to rank-2 Lie algebras. Grav. Cosmol. 13(4), 262–266 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  20. V.D. Ivashchuk, V.N. Melnikov, Multidimensional Gravity, Flux and Black Brane Solutions Governed by Polynomials. Grav. Cosmol. 20(3), 182–189 (2014)

    Article  ADS  Google Scholar 

  21. V.D. Ivashchuk, On brane solutions with intersection rules related to Lie algebras, featured review. Symmetry 9, 155 (2017)

    Article  Google Scholar 

  22. J. Fuchs, C. Schweigert, Symmetries, Lie Algebras and Representations, A Graduate Course for Physicists (Cambridge University Press, Cambridge, 1997)

    MATH  Google Scholar 

  23. B. Kostant, The solution to a generalized Toda lattice and representation theory. Adv. Math. 34, 195–338 (1979)

    Article  MathSciNet  Google Scholar 

  24. M.A. Olshanetsky, A.M. Perelomov, Explicit solutions of classical generalized Toda models. Invent. Math. 54, 261–269 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  25. V.D. Ivashchuk, Black brane solutions governed by fluxbrane polynomials. J. Geom. Phys. 86, 101–111 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  26. S.V. Bolokhov, V.D. Ivashchuk, On generalized Melvin solutions for Lie algebras of rank \(2\). Grav. Cosmol. 23(4), 337–342 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  27. S.V. Bolokhov, V.D. Ivashchuk, On generalized Melvin solutions for Lie algebras of rank 3. Int. J. Geom. Methods Mod. Phys. 15, 1850108 (2018)

    Article  MathSciNet  Google Scholar 

  28. S.V. Bolokhov, V.D. Ivashchuk, On generalized Melvin solution for the Lie algebra \(E_6\). Eur. Phys. J. 77, 664 (2017)

    Article  ADS  Google Scholar 

  29. S.V. Bolokhov, V.D. Ivashchuk, Duality identities for moduli functions of generalized melvin solutions related to classical lie algebras of rank 4. Adv. Math. Phys. V. 2018, 8179570 (2018)

  30. V.D. Ivashchuk, On flux integrals for generalized Melvin solution related to simple finite-dimensional Lie algebra. Eur. Phys. J. 77, 653 (2017)

    Article  ADS  Google Scholar 

  31. H. Lü, C.N. Pope, p-brane solitons in maximal supergravities. Nucl. Phys. B 465, 127–156 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  32. H. Lü, J. Maharana, S. Mukherji, C.N. Pope, Cosmological solutions, p-branes and the Wheeler-DeWitt equation. Phys. Rev. D 57, 2219–2229 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  33. H. Lü, C.N. Pope, \(SL(N+1, R)\) Toda solitons in supergravities. Int. J. Mod. Phys. A 12, 2061–2074 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  34. A.A. Golubtsova, V.D. Ivashchuk, On calculation of fluxbrane polynomials corresponding to classical series of Lie algebras. arXiv:0804.0757 [nlin.SI]

  35. M.J. Duff, H. Lü, C.N. Pope, The Black branes of M-theory. Phys. Lett. B 382, 73–80 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  36. H. Lü, C.N. Pope, K.W. Xu, Liouville and Toda solitons in M-theory. Mod. Phys. Lett. A 11, 1785–1796 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  37. V.D. Ivashchuk, V.N. Melnikov, Exact solutions in multidimensional gravity with antisymmetric forms, topical review. Class. Quantum Grav. 18, R1–R66 (2001)

    Article  Google Scholar 

  38. R.A. Konoplya, A. Zhidenko, Quasinormal modes of black holes: from astrophysics to string theory. Rev. Mod. Phys. 83(3), 793–836 (2011)

    Article  ADS  Google Scholar 

  39. V.D. Ivashchuk, V.N. Melnikov, Toda p-brane black holes and polynomials related to Lie algebras. Class. Quantum Grav. 17, 2073–2092 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  40. G. Clement, J.C. Fabris, M. Rodriges, Phantom black holes in Einstein-Maxwell-Dilaton theory. Phys. Rev. D 79, 064021 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  41. M. Azreg-Aïnou, G. Clément, J.C. Fabris, M.E. Rodrigues, Phantom Black holes and sigma models. Phys. Rev. D 83, 124001 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This paper has been supported by the RUDN University Strategic Academic Leadership Program (recipients: V.D.I. - mathematical model development and S.V.B. - simulation model development). The reported study was funded by RFBR, project number 19-02-00346 (recipients S.V.B and V.D.I. - physical model development).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Ivashchuk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolokhov, S.V., Ivashchuk, V.D. On generalized Melvin solutions for Lie algebras of rank 4. Eur. Phys. J. Plus 136, 225 (2021). https://doi.org/10.1140/epjp/s13360-021-01193-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01193-6

Navigation