Skip to main content

Advertisement

Log in

Synthesis, physical, optical properties, and gamma-ray absorbing competency or capability of PbO–B2O3–CaO glasses reinforced with Nd3+/Er3+ ions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A series of four glass specimens with the molar percentage formula 20PbO–50B2O3–30CaO–xEr2O3yNd2O3: (x, y) = (0,0), (0,1), (1,0), and (1,1) mol% were synthesized by the conventional melt quenching process, namely PBC-Nd0Er0, PBC-Nd0Er1, PBC-Nd1Er0, and PBC-Nd1Er1. Structure, physical, optical properties, and gamma-radiation protection efficiency of the synthesized glasses have been investigated. XRD measurements confirmed that the synthesized glasses were in non-crystalline nature. The glasses density was increased from 4.13 to 4.30 g/cm3. The direct optical band gap (OBG) decreases from 3.57 to 3.18 eV, while the indirect (OBG) decreases from 2.90 to 2.75 eV. Refractive index (n) follows the order PBC-Nd1Er1 > PBC-Nd0Er0 > PBC-Nd1Er0 > PBC-Nd0Er1. The PBC-Nd1Er1 glass sample has the highest (Ed = 25 eV), the lowest (Eo = 2 eV), and the highest value of (no) equal to 3.67 compared with other glasses. Both of optical and electrical conductivities (σoptical and σelectrical) follow the order: PBC-Nd1Er1 > PBC-Nd0Er1 > PBC-Nd1Er0 > PBC-Nd0Er0. The maximum ability for the investigated glasses to block the radiations passing through them occurred at 0.223 meV, and the LAC lies in the range of 1.650 cm−1 for PBC-Nd0Er0 and 1.719 cm−1 for PBC-Nd1Er1. By contrast, the minimum ability took place at 1.458 meV, and at this energy, the LAC lies in the range of 0.216 and 0.224 cm−1. The HVL values show that there is a trend to attenuating potentiality reducing as the energy raises from 0.223 to 1.458 meV. It is shown that the PBC-Nd1Er1 glass sample possesses the superior optical properties and shielding capacity among each of other investigated glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J. Siegel, J.M.F. Navarro, A.G. Navarro, V.D. Blanco, O. Sanz, J. Solis, F. Vega, J. Armengol, Waveguide structures in heavy metal oxide glass written with femtosecond laser pulses above the critical self-focusing threshold. Appl. Phys. Lett. 86, 121109 (2005)

    Article  ADS  Google Scholar 

  2. W. Yang, C. Corbari, P.G. Kazansky, K. Sakaguchi, I.C.S. Carvalho, Low loss photonic components in high index bismuth borate glass by femtosecond laser direct writing. Opt. Express 16, 16215–16226 (2008)

    Article  ADS  Google Scholar 

  3. J. Ashok, N. Purnachand, J. Suresh Kumar, M.S. Reddy, B. Suresh, M.P.F. Graça, N. Veeraiah, Studies on dielectric dispersion, relaxation kinetics and a.c. conductivity of Na2O–CuO–SiO2 glasses mixed with Bi2O3-influence of redox behavior of copper ions. J. Alloys Compd. 696, 1260–1268 (2017)

    Article  Google Scholar 

  4. C. Ivascu, I.B. Cozar, L. Daraban, G. Damian, Spectroscopic investigation of P2O5–CdO–Li2O glass system. J. Non-Cryst. 359, 60–64 (2013)

    Article  ADS  Google Scholar 

  5. Y. Al-Hadeethi, M.I. Sayyed, Y.S. Rammah, Fabrication, optical, structural and gamma radiation shielding characterizations of GeO2-PbO-Al2O3–CaO glasses. Ceram. Int. 46, 2055–2062 (2020)

    Article  Google Scholar 

  6. D. Souri, Seebeck coefficient of tellurite–vanadate glasses containing molybdenum. J. Phys. D Appl. Phys. 41, 105102–105104 (2008)

    Article  ADS  Google Scholar 

  7. R. El-Mallawany, N. El-Khoshkhany, H. Afifi, Ultrasonic studies of (TeO2)50–(V2O5)50–x(TiO2)x glasses. Mater. Chem. Phys. 95, 321–327 (2006)

    Article  Google Scholar 

  8. A.A. Ali, Y.S. Rammah, M.H. Shaaban, The influence of TiO2 on structural, physical and optical properties of B2O3–TeO2–Na2O–CaO glasses. J. Non-Cryst. Solids 514, 52–59 (2019)

    Article  ADS  Google Scholar 

  9. M.S. Al-Buriahi, Y.S. Rammah, Radiation sensing properties of tellurite glasses belonging to ZnO–TeO2–PbO system using Geant4 code. Radiat. Phys. Chem. 170, 108632 (2020)

    Article  Google Scholar 

  10. Y.S. Rammah, Evaluation of radiation shielding ability of boro-tellurite glasses: TeO2–B2O3–SrCl2–LiF–Bi2O3. Appl. Phys. A 125, 857 (2019)

    Article  ADS  Google Scholar 

  11. F.I. El-Agawany, E. Kavaz, U. Perişanoğlu, M. Al-Buriahi, Y.S. Rammah, Sm2O3 effects on mass stopping power/projected range and nuclear shielding characteristics of TeO2–ZnO glass systems. Appl. Phys. A 125, 838 (2019)

    Article  ADS  Google Scholar 

  12. C.R. Kesavulu, H.J. Kim, S.W. Lee, J. Kaewkhao, N. Wantana, S. Kothan, S. Kaewjaeng, Influence of Er3+ ion concentration on optical and photoluminescence properties of Er3+-doped gadolinium-calcium silica borate glasses. J. Alloys Compd. 683, 590–598 (2016)

    Article  Google Scholar 

  13. Y. Al-Hadeethi, M.I. Sayyed, BaO–Li2O–B2O3 glass systems: potential utilization in gamma radiation protection. Prog. Nucl. Energy 129, 103511 (2020)

    Article  Google Scholar 

  14. W.S. AbuShanab, E.B. Moustafa, A.H. Hammad, R.M. Ramadan, A.R. Wassel, Enhancement the structural, optical and nonlinear optical properties of cadmium phosphate glasses by nickel ions. J. Mater. Sci. Mater. Electron. 30, 18058–18064 (2019)

    Article  Google Scholar 

  15. P. Bergo, S.T. Reis, W.M. Pontuschka, J.M. Prison, C.C. Motta, Dielectric properties and structural features of barium-iron phosphate glasses. J. Non-Cryst. Solids 336, 159 (2004)

    Article  ADS  Google Scholar 

  16. C. Ivascu, I.B. Cozar, L. Daraban, G. Damian, Spectroscopic investigation of P2O5–CdO–Li2O glass system. J. Non-Cryst. Solids 359, 60–64 (2013)

    Article  ADS  Google Scholar 

  17. H. Doweidar, Y.M. Moustafa, K. El-Egili, I. Abbas, Infrared spectra of Fe2O3–PbO–P2O5 glasses. J. Vib. Spectrosc. 37, 91–96 (2005)

    Article  Google Scholar 

  18. V.M. Sglavo, E. Mura, D. Milanese, J. Lousteau, Mechanical properties of phosphate glass optical fibers. Int. J. Appl. Glass Sci. 5(1), 57–64 (2014)

    Article  Google Scholar 

  19. E. Kavaz, F.I. El_Agawany, H.O. Tekin, U. Perişanoğlu, Y.S. Rammah, Nuclear radiation shielding using barium borosilicate glass ceramics. J. Phys. Chem. Solids 142, 109437 (2020)

    Article  Google Scholar 

  20. Y.S. Rammah, E. Kavaz, H. Akyildirim, F.I. El-Agawany, Evaluation of photon, neutron, and charged particle shielding competences of TeO2–B2O3–Bi2O3–TiO2 glsses. J. Non-Cryst. Solids 535, 119960 (2020)

    Article  ADS  Google Scholar 

  21. Y.S. Rammah, A.A. Ali, R. El-Mallawany, F.I. El-Agawany, Fabrication, physical, optical characteristics and gamma-ray competence of novel bismo-borate glasses doped with Yb2O3 rare earth. Phys. B 583, 412055 (2020)

    Article  Google Scholar 

  22. Y.S. Rammah, G. Kilic, R. El-Mallawany, U. Gökhan-Issever, F.I. El-Agawany, Investigation of optical, physical, and gamma-ray shielding features of novel vanadyl boro-phosphate glasses. J. Non-Cryst. Solids 533, 119905 (2020)

    Article  Google Scholar 

  23. A.S. Abouhaswa, M.S. Al-Buriahi, M. Chalermpon, Y.S. Rammah, Influence of ZrO2 on gamma shielding properties of lead borate glasses. Appl. Phys. A 126, 7 (2020)

    Article  Google Scholar 

  24. M.H.M. Zaid, K.A. Matori, H.J. Quah, W.F. Lim, H.A.A. Sidek, M.K. Halimah, W.M.M. Yunus, Z.A. Wahab, Investigation on structural and optical properties of SLS–ZnO glasses prepared using a conventional melt quenching technique. J. Mater. Sci. Mater. Electron. 26(6), 3722–3729 (2015)

    Article  Google Scholar 

  25. T. Yanagida, J. Ueda, H. Masai, Y. Fujimoto, S. Tanabe, Optical and scintillation properties of Ce-doped 34Li2O–5MgO–10Al2O3–51SiO2 glass. J. Non-Cryst. Solids 431, 140–144 (2016)

    Article  ADS  Google Scholar 

  26. K. Kaur, K.J. Singh, V. Anand, Correlation of gamma ray shielding and structural properties of PbO–BaO–P2O5 glass system. Nucl. Eng. Des. 285, 31–38 (2015)

    Article  Google Scholar 

  27. S. Kaewjaeng, J. Kaewkhao, P. Limsuwan, U. Maghanemi, Effect of BaO on optical, physical and radiation shielding properties of SiO2–B2O3–Al2O3–CaO–Na2O glasses system. Procedia Eng. 32, 1080–1086 (2012)

    Article  Google Scholar 

  28. M.I. Sayyed, F. Laariedh, A. Kumr, M.S. Al-Buriahi, Experimental studies on the gamma photon shielding competence of TeO2–PbO–BaO–Na2O–B2O3 glasses. Appl. Phys. A 126, 4 (2020)

    Article  ADS  Google Scholar 

  29. M.I. Sayyed, Y. Al-Hadeethi, M.M. AlShammari, M. Ahmed, S.H. Al-Heniti, Y.S. Rammah, Physical, optical and gamma radiation shielding competence of newly borotellurite based glasses: TeO2–B2O3–ZnO–Li2O3–Bi2O3. Cer. Int. 47, 611-618 (2021)

    Article  Google Scholar 

  30. Y.S. Rammah, K.A. Mahmoud, M.I. Sayyed, F.I. El-Agawany, R. El-Mallawany, Novel vanadyl lead-phosphate glasses: P2O5–PbO–ZnO-Na2O–V2O5: synthesis, optical, physical and gamma photon attenuation properties. J. Non-Cryst. Solids 534, 119944 (2020)

    Article  Google Scholar 

  31. Y. Al-Hadeethi, M.I. Sayyed, Y.S. Rammah, Investigations of the physical, structural, optical and gamma-rays shielding features of B2O3–Bi2O3–ZnO–CaO glasses. Ceram. Int. 45, 20724–20732 (2019)

    Article  Google Scholar 

  32. E.A. Davis, N.F. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. J. Theor. Exp. Appl. Phys. 22, 0903–0922 (1970)

    Google Scholar 

  33. A.S. Abouhaswa, Y.S. Rammah, S.E. Ibrahim, A.A. El-Hamalawy, Structural, optical, and electrical characterization of borate glasses doped with SnO2. J. Non-Cryst. Solids 494, 59–65 (2018)

    Article  ADS  Google Scholar 

  34. D. Souri, Z.E. Tahan, A new method for the determination of optical band gap and the nature of optical transitions in semiconductors. Appl. Phys. B 119, 273–279 (2015)

    Article  ADS  Google Scholar 

  35. D. Souri, M. Mohammadi, H. Zaliani, Effect of antimony on the optical and physical properties of Sb–V2O5–TeO2 glasses. Electron. Mater. Lett. 10(6), 1103–1108 (2014)

    Article  ADS  Google Scholar 

  36. V. Dimitrov, S. Sakka, Electronic oxide polarizability and optical basicity of simple oxides. J. Appl. Phys. 79, 1736–1740 (1996)

    Article  ADS  Google Scholar 

  37. T.A. Taha, Y.S. Rammah, Optical characterization of new borate glass doped with titanium oxide. J. Mater. Sci. Mater. Electron. 27(2), 1384–1390 (2016)

    Article  Google Scholar 

  38. S.H. Wemple, J.R. DiDomenico, Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B 3, 1338 (1971)

    Article  ADS  Google Scholar 

  39. A.S. Abouhaswa, Physical properties of anatase TiO2 nanocrystallites: based photoanodes doped with Cr2O3. Opt. Quant. Electron. 52, 144 (2020)

    Article  Google Scholar 

  40. E. Şakar, Ö.F. Özpolat, B. Alım, M.I. Sayyed, M. Kurudirek, Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 166, 108496 (2020)

    Article  Google Scholar 

  41. Y. Al-Hadeethi, M.I. Sayyed, A comprehensive study on the effect of TeO2 on the radiation shielding properties of TeO2–B2O3–Bi2O3–LiF–SrCl2 glass system using Phy-X/PSD software. Ceram. Int. 46, 6136–6140 (2020)

    Article  Google Scholar 

  42. W. Cheewasukhanont, P. Limkitjaroenporn, S. Kothan, C. Kedkaew, J. Kaewkhao, The effect of particle size on radiation shielding properties for bismuth borosilicate glass. Radiat. Phys. Chem. 172, 108791 (2020)

    Article  Google Scholar 

  43. L. Shamshad, G. Rooh, P. Limkitjaroenporn, N. Srisittipokakun, W. Chaiphaksa, H.J. Kim, J. Kaewkhao, A comparative study of gadolinium based oxide and oxyfluoride glasses as low energy radiation shielding materials. Prog. Nucl. Energy 97, 53–59 (2017)

    Article  Google Scholar 

  44. M. Dong, X. Xue, A. Kumar, H. Yang, M.I. Sayyed, S. Liu, E. Bu, A novel method of utilization of hot dip galvanizing slag using the heat waste from itself for protection from radiation. J. Hazard. Mater. 344, 602–614 (2018)

    Article  Google Scholar 

  45. M. Dong, X. Xue, He. Yang, Z. Li, Highly cost-effective shielding composite made from vanadium slag and boron-rich slag and its properties. Radiat. Phys. Chem. 141, 239–244 (2017)

    Article  ADS  Google Scholar 

  46. M. Dong, X. Xue, He. Yang, D. Liu, C. Wang, Z. Li, A novel comprehensive utilization of vanadium slag: As gamma ray shielding material. J. Hazard. Mater. 318, 751–757 (2016)

    Article  Google Scholar 

  47. Y. Al-Hadeethi, M.I. Sayyed, H. Mohammed, L. Rimondin, X-ray photons attenuation characteristics for two tellurite based glass systems at dental diagnostic energies. Cer. Int. 46, 251–257 (2020)

    Article  Google Scholar 

  48. Y. Al-Hadeethi, M.S. Al-Buriahi, M.I. Sayyed, Bioactive glasses and the impact of Si3N4 doping on the photon attenuation up to radiotherapy energies. Ceram. Int. 46, 5306–5314 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant No. RG-5-130-41. The authors, therefore, acknowledge with thanks technical and financial support of DSR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Sayyed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Hadeethi, Y., Sayyed, M.I., Raffah, B.M. et al. Synthesis, physical, optical properties, and gamma-ray absorbing competency or capability of PbO–B2O3–CaO glasses reinforced with Nd3+/Er3+ ions. Eur. Phys. J. Plus 136, 189 (2021). https://doi.org/10.1140/epjp/s13360-021-01174-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01174-9

Navigation