Skip to main content
Log in

Treatment of a three-dimensional central potential with cubic singularity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We compute the bound states for a special type of singular central potential that generalizes the hyperbolic Eckart potential by adding a cubic singular term at the origin while keeping the short range exponential decay far away from the origin. Such strong singular potentials are of practical importance in atomic, nuclear and molecular physics. To bring the solution of the Schrodinger equation for finite angular momentum to analytical treatment we use an analytical approximation to the centrifugal orbital part of the potential that has a similar structure to the Eckart potential. We compute the energy spectrum associated with this potential using both the tridiagonal representation approach (TRA) and the asymptotic iteration method (AIM) and make a comparative analysis of these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. P.M. Morse, Phys. Rev. 34(1), 57 (1929)

    Article  ADS  Google Scholar 

  2. S.H. Dong, R. Lemus, A. Frank, Int. J. Quant. Phys. 86(5), 433–439 (2002)

    Google Scholar 

  3. S.M. Ikhdair, Chem. Phys. 361(1–2), 9–17 (2009)

    Article  Google Scholar 

  4. J.Y. Liu, G.D. Zhang, C.S. Jia, Phys. Lett. A 377(21–22), 1444–1447 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  5. B.J. Falaye, S.M. Ikhdair, M. Hamzavi, J. Math. Chem. 53(6), 1325–1350 (2015)

    Article  MathSciNet  Google Scholar 

  6. L. Infeld, T.D. Hull, Rev. Mod. Phys. 23(1), 21 (1951)

    Article  ADS  Google Scholar 

  7. S.H. Dong, Factorization Method in Quantum Mechanics, Vol. 150 of Fundamental Theories of Physics (Springer, Dordrecht, 2007)

    Book  Google Scholar 

  8. H. Ciftci, R.L. Hall, N. Saad, J. Phys. A: Math. Gen. 36(47), 11807 (2003)

    Article  ADS  Google Scholar 

  9. A.F. Nikiforov, V.B. Uvarov, Special Functions of Mathematical Physics, vol. 205 (Birkhuser, Basel, 1988)

    Book  MATH  Google Scholar 

  10. C. Berkdemir, Application of the Nikiforov-Uvarov method in quantum mechanics, 225, Theor. Conc. Quant. Mech. (2012)

  11. A.D. Alhaidari, J. Math. Phys. 58(7), 072104 (2017). and references therein

    Article  ADS  MathSciNet  Google Scholar 

  12. S.H. Dong, R. Lemus, A. Frank, Intern. J. Quan. Chem. 86(5), 433–439 (2002)

    Article  Google Scholar 

  13. F. Cooper, A. Khare, U. Sukhatme, Supersymmetry in Quantum Mechanics (World Scientific, Singapore, 2004)

    MATH  Google Scholar 

  14. M. Bander, C. Itzykson, Rev. Mod. Phys. 38(2), 330 (1968)

    Article  ADS  Google Scholar 

  15. Y. Alhassid, F. Iachello, F. Gursey, Chem. Phys. Lett. 99(1), 27–30 (1983)

    Article  ADS  Google Scholar 

  16. Y. Alhassid, F. Gursey, F. Iachello, Phys. Rev. Lett. 50(12), 873 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  17. A.D. Alhaidari, H. Bahlouli, M.S. Abdelmonem, J. Phys. A: Math. Theor. 41(3), 032001 (2008)

    Article  ADS  Google Scholar 

  18. I.A. Assi, A.J. Sous, Euro. Phys. J. Plus 133(5), 175 (2018)

    Article  Google Scholar 

  19. I.A. Assi, A.J. Sous, H. Bahlouli, Mod. Phys. Lett. A 33(22), 1850128 (2018)

    Article  ADS  Google Scholar 

  20. W.C. Qiang, S.H. Dong, Phys. Lett. A 372(27–28), 4789–4792 (2008)

    Article  ADS  Google Scholar 

  21. W.C. Qiang, S.H. Dong, Phys. Lett. A. 368(1–2), 13–17 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  22. S.H. Dong et al., J. Phys A: Math. Theor. 40(34), 10535 (2007)

    Article  ADS  Google Scholar 

  23. S. Dong, S.G. Miranda, F.M. Eriquez, S.H. Dong, Mod. Phys. Lett. B 22(07), 483 (2008)

    Article  ADS  Google Scholar 

  24. S. Dong, J.G. Ravelo, S.H. Dong, Phys. Scr. 76(4), 393 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  25. M.P. Valderrama, E.R. Arriola, Phys. Rev. C 72(5), 054002 (2005)

    Article  ADS  Google Scholar 

  26. M.P. Valderrama, E.R. Arriola, Phys. Rev. C 70(4), 044006 (2004)

    Article  ADS  Google Scholar 

  27. D. Odell, A. Deltuva, J. Bonilla, L. Platter, Phys. Rev. C 100(5), 054001 (2019)

    Article  ADS  Google Scholar 

  28. T.O. Mller, Phys. Rev. Lett. 110(26), 260401 (2013)

    Article  ADS  Google Scholar 

  29. W.B. Brown, R.E. Roberts, J. Chem. Phys. 46(5), 2006–2007 (1967)

    Article  ADS  Google Scholar 

  30. A.D. Alhaidari, H. Bahlouli, Phys. Rev. Lett. 100(11), 110401 (2008). and references therein

  31. A.D. Alhaidari, Mod. Phys. Lett. A 34(28), 1950223 (2019)

    Article  ADS  Google Scholar 

  32. A. Khare, U.P. Sukhatme, J. Phys. A: Math. Gen. 21(9), L501 (1988)

    Article  ADS  Google Scholar 

  33. R.L. Greene, C. Aldrich, Phys. Rev. A 14(6), 2363 (1976)

    Article  ADS  Google Scholar 

  34. M. Ismail, N. Saad, J. Math. Phys. 61(3), 033501 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  35. I.A. Assi, A.J. Sous, A.N. Ikot, Euro. Phys. J. Plus 132(12), 525 (2017)

    Article  Google Scholar 

  36. S.A. Al-Buradah, H. Bahlouli, A.D. Alhaidari, J. Math. Phys. 58(8), 083501 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  37. A.J. Sous, Pramana 93(2), 22 (2019)

    Article  ADS  Google Scholar 

  38. A.D. Alhaidari, E.J. Heller, H.A. Yamani, M.S. Abdelmonem, The J-matrix method. Development and Applications (Springer, Berlin, 2008)

    Book  MATH  Google Scholar 

  39. A.D. Alhaidari, Ann. Phys. 317(1), 152–174 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  40. A.D. Alhaidari, Rep. Math. Phys. 84(3), 393–405 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  41. W. Van Assche, SIGMA. Symm., Integ. Geom.: Meth. App. 15, 005 (2019)

    Google Scholar 

  42. A.D. Alhaidari, M.E.H. Ismail, J. Math. Phys. 56(7), 072107 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  43. A.D. Alhaidari, T.J. Taiwo, J. Math. Phys. 58(2), 022101 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  44. M.A. Prasad, R.F. Wallis, R. Herman, Solid State Commun. 77(12), 973–976 (1991)

    Article  ADS  Google Scholar 

  45. V.I. Pupyshev, A.Y. Ermilov, Int. J. Quantum Chem. 96(3), 185–192 (2004)

    Article  Google Scholar 

  46. A. Ferron, P. Serra, S. Kais, J. Chem. Phys. 120(18), 8412–8419 (2004)

    Article  ADS  Google Scholar 

  47. W.R. Garrett, J. Chem. Phys. 128(19), 194309 (2008)

    Article  ADS  Google Scholar 

  48. W.R. Garrett, J. Chem. Phys. 136(5), 054116 (2012)

    Article  ADS  Google Scholar 

  49. A.D. Alhaidari, Int. J. Mod. Phys. A 20(12), 2657–2672 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

HB acknowledge the support of King Fahd University of Petroleum and Minerals under research group project RG181001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Assi.

Appendix A. Relevant matrices for the TRA

Appendix A. Relevant matrices for the TRA

In Eq. 15, few matrices have been introduced. First, the matrix X is defined as follows [31, 49]

$$\begin{aligned} X_{nm}=Q_{n}\delta _{nm}+R_{n}\delta _{n,m-1}+R_{n-1}\delta _{n,m+1} \end{aligned}$$
(18)

where

$$\begin{aligned} Q_{n}=\frac{\nu ^{2}-\mu ^{2}}{(2n+\mu +\nu )(2n+\mu +\nu +2)} \end{aligned}$$
(19)

and

$$\begin{aligned} R_{n}=\frac{2}{2n+\mu +\nu +2}\sqrt{\frac{(n+1)(n+\mu +1)(n+\nu +1)(n +\mu +\nu +1)}{(2n+\mu +\nu +1)(2n+\mu +\nu +3)}} \end{aligned}$$
(20)

Next, the matrix \(\sigma ^{\pm }\) are define by [31]

$$\begin{aligned} \sigma ^{\pm }=\varLambda \cdot D^{\pm }\cdot \varLambda ^{T} \end{aligned}$$
(21)

where \(\varLambda \) is a matrix containing the eigenvectors of the truncated version of the matrix X of size \((N+1)\times (N+1)\) and \(D^{\pm }_{nm}=\frac{1}{1\mp x_{n}}\delta _{nm}\) where \(x_{n}\) is the associated eigenvalue of the truncated matrix. Lastly, the matrix \(\omega \) introduced in Eq. 16 is \(\omega =-\varLambda \cdot D^{+}D^{-}\cdot \varLambda ^{T}\), where the symbol “\(\cdot \)” stands for matrix product operation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assi, I.A., Sous, A.J. & Bahlouli, H. Treatment of a three-dimensional central potential with cubic singularity. Eur. Phys. J. Plus 136, 47 (2021). https://doi.org/10.1140/epjp/s13360-020-01032-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-01032-0

Navigation